

This project has received funding from the European Union’s Horizon 2020 Research and

innovation programme under Grant Agreement n°820621

Project Acronym: BIMERR

Project Full Title: BIM-based holistic tools for Energy-driven Renovation of existing

Residences

Grant Agreement: 820621

Project Duration: 42 months

DELIVERABLE D8.2

BIMERR Middleware prototype

Deliverable Status: Final

File Name: D8.2 BIMERR Middleware prototype_prereview_merged.docx

Due Date: 28/02/2021 (M26)

Submission Date: 26/02/2021 (M26)

Task Leader: FIT (T8.2)

Dissemination level

Public X

Confidential, only for members of the Consortium (including the Commission Services)

Ref. Ares(2021)1529467 - 27/02/2021

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 2 of 67

Disclaimer

BIMERR project has received funding from the European Union’s Horizon 2020 Research and

innovation programme under Grant Agreement n°820621. The sole responsibility for the content

of this publication lies with the authors. It does not necessarily reflect the opinion of the European

Commission (EC). EC is not liable for any use that may be made of the information contained

therein.

The BIMERR project consortium is composed of:

FIT
Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung
E.V.

Germany

CERTH Ethniko Kentro Erevnas Kai Technologikis Anaptyxis Greece

UPM Universidad Politecnica De Madrid Spain

UBITECH Ubitech Limited Cyprus

SUITE5 Suite5 Data Intelligence Solutions Limited Cyprus

HYPERTECH
Hypertech (Chaipertek) Anonymos Viomichaniki Emporiki Etaireia
Pliroforikis Kai Neon Technologion

Greece

MERIT Merit Consulting House Sprl Belgium

XYLEM Xylem Science And Technology Management Gmbh Austria

CONKAT
Anonymos Etaireia Kataskevon Technikon Ergon, Emporikon
Viomichanikonkai Nautiliakon Epicheiriseon Kon'kat

Greece

BOC Boc Asset Management Gmbh Austria

BX Budimex Sa Poland

UOP University Of Peloponnese Greece

UEDIN University of Edinburgh United Kingdom

NT Novitech As Slovakia

FER Ferrovial Agroman S.A Spain

UCL University College London United Kingdom

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 3 of 67

AUTHORS LIST

Leading Author (Editor)

Surname First Name Beneficiary Contact email

Tavakolizadeh Farshid FIT farshid.tavakolizadeh@fit.fraunhofer.de

Co-authors (in alphabetic order)

Surname First Name Beneficiary Contact email

1 Devasya Shreekantha FIT shreekantha.devasya@fit.fraunhofer.de

2 Grass Alex FIT alexander.grass@fit.fraunhofer.de

3 Schell Philip FIT philip.schell@fit.fraunhofer.de

REVIEWERS LIST

List of Reviewers (in alphabetic order)

Surname First Name Beneficiary Contact email

1 Lampathaki Fenareti SUITE5 fenareti@suite5.eu

2 Kousouris Spiros UCL spiros@suite5.eu

3 Nektarios Lilis Georgios UCL gnl2@cornell.edu

4 Katsigarakis Kyriakos UCL k.katsigarakis@ucl.ac.uk

5 Giannakis Giorgos Hypertech g.giannakis@hypertech.gr

REVISION CONTROL

Version Author Date Status

0.1 Farshid Tavakolizadeh, Shreekantha

Devasya

15/01/2021 Defined table of content

prereview Farshid Tavakolizadeh, Shreekantha

Devasya, Alex Grass, Philip Schell

10/02/2021 Quality Check

1.0 Farshid Tavakolizadeh, Shreekantha

Devasya, Alex Grass

26/02/2021 Refinements to address internal

feedback from internal reviewers.

Ready for submission to the EC

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 4 of 67

TABLE OF CONTENTS

List of Figures .. 6

Executive Summary ... 7

1. Introduction .. 8

2. Middleware for Identity Management ... 12

2.1 Identity Provider ... 12

3. Middleware for Data Management .. 15

3.1 Registry ... 16

3.2 Storage.. 19

3.3 Data Processor .. 22

3.3.1 Onboarding ... 24

3.3.2 Data Retrieval ... 25

3.3.3 Outlier Detection .. 27

3.3.4 Alerting .. 31

3.4 OTA Software Update and Monitoring ... 33

3.5 Device Connector .. 35

3.5.1 Z-Wave Controller .. 35

3.5.2 Intesis AC Controller ... 37

4. Deployment Infrastructure ... 38

4.1 Development Testbed ... 39

5. Conclusions and Future Work ... 41

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 5 of 67

6. Bibliography .. 42

Annexes .. 44

Annex A - Identity Provider: Token Request .. 44

Annex B – Identity Provider: Security Tokens ... 48

Annex C – Identity Provider: Identity Provider REST API ... 49

Annex D – Data Processor Alert Configuration Sample ... 56

Annex E – Data Processor Sample Device Type Configuration ... 57

Annex F – Data Processor Sample Project Configuration for Devices... 59

Annex G – Sample Thing Description for a wireless Luminance Sensor 61

Annex H – Sample Device Alert Email .. 64

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 6 of 67

LIST OF FIGURES

Figure 1. BIMERR middleware components and their interaction with other BIMERR sub-

systems. The implementation names or acronyms are included in parenthesis. The middleware

components are involved in identity management (blue) and data management (green). 8

Figure 2. Data flow between Identity Provider and the rest of the BIMERR system. The labels do

not indicate any specific order and are only used as reference in the descriptions.................... 12

Figure 3. The overall architecture of middleware data management components with internal

and external interactions. .. 15

Figure 4. Component diagram of the Registry (realized as LinkSmart Thing Directory). 18

Figure 5. Component diagram of Storage (Historical Datastore) .. 21

Figure 6. Data Processor's onboarding sequence .. 24

Figure 7. High level flow of data retrieval ... 26

Figure 8. Outlier Detection: Core process flow ... 28

Figure 9: Global Outlier Detection (left) vs Contextual Outlier Detection (right) 32

Figure 10. High level sequence for alerting ... 32

Figure 11. Components and internal modules of the OTA Update and Monitoring component

(LinkSmart Deployer)... 34

Figure 12. The deployment diagram of core middleware components (green), enabling sensor

data management in pilot sites with varied characteristics. ... 38

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 7 of 67

EXECUTIVE SUMMARY

This deliverable reports the work done within T8.2 - Design & configuration of Middleware for

Information Exchange throughout Architecture as part of the WP8 - ICT System Integration,

Testing & Pre-Validation.

The middleware design reflects the requirements of the project associated with secure and

standardized information exchange among the various BIMERR components. Respectively, the

middleware is designated for identity and sensor data management in the BIMERR project. The

identity management is to maintain user and application profiles and authenticate the identity

of resource owners. The sensor data management is a collection of functionalities to extract,

maintain, annotate, and expose sensor data for building data collection and residential

profiling applications. The middleware follows a microservice architecture which can be

customized and deployed tailored to the applications’ needs. The BIMERR project deployed a

central set of components on the cloud and various instances of components on low-powered

gateway devices in pilot sites.

The design and implementation of the middleware were carried out according to the plan,

starting from M10 all the way to M26. The initial and refined designs were documented

consecutively within the D3.5 and D3.6 BIMERR architecture documents. The current document

reports the current architecture and deployment as a result of several iterative design,

implementation and testing cycles. As the project progresses with the pre-validation and pilot

stages, the middleware may require future work in form of minor refinements. Such changes

will be reported in the deliverables of T8.3 - End-to-end ICT System Integration Testing &

Refinement i.e., D8.4 (M30) and D8.5 (M40).

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 8 of 67

1. INTRODUCTION

The BIMERR middleware is a collection of components intended for smooth integration of ICT

systems within the BIMERR system. The concrete design of the middleware is based on the

requirements gathered over the initial project phases as reported in D3.1. The initial and refined

designs were reported in D3.5 and D3.6; the two consecutive architecture deliverables.

Figure 1. BIMERR middleware components and their interaction with other BIMERR sub-systems. The

implementation names or acronyms are included in parenthesis. The middleware components are involved

in identity management (blue) and data management (green).

In accordance with the project’s requirements, the middleware focuses on two main tasks:

1. Identity management: A directory of users with roles and association to projects. The

information shall be used to enable access control across the BIMERR system.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 9 of 67

2. Data management: A distributed system to interface with the heterogenous wireless

sensor network (WSN) to expose the relevant data in a structured, efficient, secure, and

privacy-aware manner.

Figure 1 shows the components of the middleware and their interaction with the rest of the

BIMERR system. The next chapters describe these components and the interactions in detail.

The components, licensing, and distributions methods are listed in Table 1.

The characteristics of the middleware can be summarized as follows:

Modularity: The middleware is a modular system and customized to satisfy functional use case

needs. The current design consists of six components. The Identity Provider is a central

authentication server, a directory of user and application profiles, providing interfaces to

authenticate them. Registry provides a searchable metadata directory for available devices

(sensors, gateways), their endpoints and API (application programming interface) definitions.

Data Processor mediates between various transfer protocols, routes live data, and transforms

them to expected formats. Storage service provides time-series sensor data archival and

retrieval capabilities. OTA 1 Software Update & Monitoring module allows remote software

update and monitoring of gateway devices. Lastly, Device Connector provides abstraction on

low level sensor protocols, exposing functionalities over higher-level IP protocols.

Efficiency: The components involved in data management place high focus on lowering the

consumption of resources. This includes computational (e.g. CPU, RAM) and networking

resources to minimize carbon footprints as well as costs. The approaches vary in different

components, but generally involve processing close to the source coupled with economic data

storage.

Portability: The components are packages as Docker images for various architectures. This

allows deployment in the cloud or on the edge gateways (inside buildings or apartments)

depending on the use cases. One goal is to offer most services on the producer side to reduce

communication overhead and enhance data privacy. At the same time, it is possible to offer

such services on the cloud, when physical constraints hinder local deployments.

1 Over the air

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 10 of 67

Table 1. Summary of middleware component realization, licensing, and distributions.

Component

Name

Implementation

Name

BIMERR Extensions Programming

Language

Distribution License

Identity

Provider

Keycloak None Java Docker images Apache 2.0

Registry LinkSmart Thing

Directory

Fully developed within

BIMERR

Go Docker image,

Debian

packages,

Binary

distribution

Apache 2.0

Data

Processor

Node-RED as the

main programming

tool

Application logic is

fully developed in

BIMERR

JavaScript,

Python

Docker images NodeRED:

Apache 2.0

Node-RED

flows and

scripts:

Proprietory

Storage LinkSmart

Historical

Datastore

Synchronization

between distributed

storage nodes

Storage backend

optimization

API Extensions: gRPC

protocol for binary

serialization and

aggregation on-the-

fly

Go Docker images,

Binary

distributions

Apache 2.0

OTA

Software

Update

LinkSmart Deployer None Go Docker image,

Debian

packages,

Binary

distribution

Apache 2.0

Device

Connector

Fibaro Home

Center Lite

Intesis AC

Controller

None - Pre-installed

software on

devices

Proprietory

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 11 of 67

Reusability: The middleware uses various open-source software in the implementations. In

particular, it utilizes few components from the LinkSmart2 platform and extends them in a

generic way to satisfy the BIMERR needs while staying generic and reusable. Fraunhofer FIT is

the main contributor to LinkSmart and these extensions are fed back to the platform as open-

source contributions. The list of all reused components and BIMERR extensions are provided

in Table 1.

Other quality attributes such as scalability, security, resilience, configurability, and reliability are

discussed per component in the next chapters.

Chapters 2 and 3 describe the architecture of the two independent BIMERR subsystems for

identity management and data management respectively. Those are followed by a brief

overview of the middleware deployments in Chapter 4 supporting the BIMERR use cases. At

last, Chapter 5 provides a summary of achievements and directions for future work.

2 https://linksmart.eu/

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 12 of 67

2. MIDDLEWARE FOR IDENTITY MANAGEMENT

The identity management part of the middleware aims to provide the backbone to maintain

user and application information and authenticate the owners of such data (resource owners)

upon request. The requirement gathering and design of the identity management were

performed as part of T8.3 - End-to-end ICT System Integration Testing & Refinement and

reported inside D8.3 - Integrated BIMERR ICT system 1. In this deliverable we describe the

component, called the Identity Provider, which realizes the expected functionalities.

2.1 IDENTITY PROVIDER

Figure 2. Data flow between Identity Provider and the rest of the BIMERR system. The labels do not

indicate any specific order and are only used as reference in the descriptions.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 13 of 67

The BIMERR Identity Provider is an authentication server implementing the OpenID Connect3

protocol with additional APIs (application programming interfaces) for access management.

We utilized Keycloak 4 , an industry standard implementation for identity and access

management. Keycloak is developed by Red Hat and other contributors and is available as

open source under Apache 2.0 license5. It offers rich graphical user interface (GUI) and RESTful

API6 which are used to satisfy various identity management requirements of the project.

Figure 2 shows the data flow for identity management across the BIMERR system. At the centre,

the Identity Provider interacts with other components in the following ways:

A. User registration on Identity Provider GUI via a user agent (e.g. web browser).

B. App (client) registration on Identity Provider GUI via a user agent (e.g. web browser).

C. Renovation/Construction project (user roles, user groups) creation on Identity Provider

GUI via a user agent (e.g. web browser).

D. User log in and retrieval of identity tokens on Identity Provider GUI which can be passed

to any BIMERR application as a proof of authentication when requesting resources. This

is usually initiated with a redirect from an application.

E. Application authentication and retrieval of access token for requesting resources from

other applications.

F. User and application profile retrieval for Building Information Secure Provisioning (BISP)

component of BIMERR Interoperability Framework (BIF), responsible for enforcing

access control on requests.

G. Registration events queries by Process and Workflow Modelling and Automation

(PWMA) tool to detect necessary events and submit them to relevant users such as the

BIMERR identity managers by email.

3 https://openid.net/developers/specs/

4 https://www.keycloak.org/

5 https://github.com/keycloak/keycloak

6 https://www.keycloak.org/docs-api/12.0/rest-api/index.html

https://openid.net/developers/specs/
https://www.keycloak.org/
https://github.com/keycloak/keycloak
https://www.keycloak.org/docs-api/12.0/rest-api/index.html

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 14 of 67

The technical guides on how to use Keycloak APIs as BIMERR Identity Provider are available to

project stakeholders. For the sake of completeness, these documents are provided in this

deliverable as annexes:

• Annex A - Identity Provider: Token Request: information about authentication flows

and token requests.

•

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 15 of 67

• Annex B – Identity Provider: Security Tokens: instructions about processing and

validating the security tokens.

• Annex C – Identity Provider: Identity Provider REST API: a selected subset of useful

Keycloak API endpoints and BIMERR examples.

Information related to using Keycloak’s data model mapping to BIMERR and use of Keycloak

GUI as a frontend for central BIMERR project metadata and user identity management are

presented T8.3 - End-to-end ICT System Integration Testing & Refinement deliverable series

(D8.3-D8.5).

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 16 of 67

3. MIDDLEWARE FOR DATA MANAGEMENT

Figure 3. The overall architecture of middleware data management components with internal and external

interactions.

The middleware consists of several components responsible for sensor data management. The

high-level goal of these components is to retrieve data from the BIMERR wireless sensor

networks (WSNs) and make them available in a structured and efficient manner to the BIMERR

system. As mentioned in Chapter 1, one goal of the middleware design is to process and

maintain most of the data close to the source and transfer only the necessary information to

the cloud. This approach provides advantages such as optimal use of locally available storage

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 17 of 67

and computational capabilities, reduction of data transfer and cloud storage costs,

simplification of ownership and privacy management. The disadvantage to this approach is

that the locally maintained information may not be always reliable and available. The design

of the middleware tries to address the challenges of making local computational resources

more reliable and available; thus, ensuring that the advantages of the selected design outweigh

the disadvantages. The data management components of the middleware along with the

internal and external relations are illustrated in Figure 3.

3.1 REGISTRY

The BIMERR middleware operates on multiple interconnected networks consisting of

numerous web services. These services provide software functionalities or give access to

gateways and sensor measurements. It is possible to statically configure endpoints of services

on the cloud. But this is not practical when it comes to services on edge gateways. The gateway

services are often part of a dynamic network environment, making any form of static

configuration obsolete very quickly. Networking solutions such as reserved DHCP7 addresses

or DNS8 are not applicable since routing devices are beyond middleware’s control. To be able

to maintain such dynamic endpoints, we require a central registry with up-to-date metadata

to be able to query and access required items.

Modelling of heterogenous devices is a challenging task. While it is tempting to develop a

simple model which serves the project’s requirements, there is always the risk of creating a

model which is not extensible beyond the initial application. Moreover, the development of a

new model reduces interoperability with other existing solutions. Among the available data

models for device metadata modelling, two are standardized and most commonly used: OGC

SensorThings9 and W3C Web of Thing (WoT)10. The SensorThings standard is a data model and

API (application programming interface) specification for sensors and actuators. The

7 https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

8 https://en.wikipedia.org/wiki/Domain_Name_System

9 https://www.ogc.org/standards/sensorthings

10 https://www.w3.org/WoT/

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System
https://www.ogc.org/standards/sensorthings
https://www.w3.org/WoT/

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 18 of 67

specifications are appropriate for centralized storage of both metadata and sensor data but

fails to address situations where data is maintained in decentralized locations. Moreover,

SensorThings enforces a single data model for measurements from all devices. The BIMERR

system middleware needs to store data in a decentralized architecture and allow interoperation

of heterogenous devices with various data models. The Web of Thing standard introduces the

Thing Description: a data model to describe metadata of devices along with the

specification on how to interact with the device APIs. The model is semantically annotated

to provide interoperability with applications in other domains. Moreover, it can be extended

to include domain-specific meta-attributes that may be needed to identify and interact with

the devices.

The Web of Thing (WoT) standard was selected as it the most appropriate for the chosen

architecture and the WSN devices used for residential profiling. At the time of making this

decision, the WoT standard had no API specification for registration of Thing Description.

BIMERR partners (Fraunhofer FIT and UPM) which are active members of the W3C WoT heavily

contributed to the standardization of the API specification as part of WoT Discovery working

group. The first public working draft of the WoT Discovery is now complete and available to

the public (Cimmino 2020). The API of the BIMERR Registry (Directory of Thing Descriptions)

was the basis for the initial draft of the WoT Discovery Registration API.

The implementation of Registry is in Go, as open source with Apache 2.0 and available as the

LinkSmart Thing Directory11. This service exposes a RESTful API12 over HTTP with endpoints to

manage resources, as well as to search for particular ones, based on their properties. The API

is protected from external access by means of Bearer Tokens obtained from the Identity

Provider and access control based on OpenID profile of the requester13.

11 https://github.com/linksmart/thing-directory

12 https://en.wikipedia.org/wiki/Representational_state_transfer

13 https://github.com/linksmart/go-sec/wiki/Authorization

https://github.com/linksmart/thing-directory
https://en.wikipedia.org/wiki/Representational_state_transfer
https://github.com/linksmart/go-sec/wiki/Authorization

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 19 of 67

Figure 4. Component diagram of the Registry (realized as LinkSmart Thing Directory).

Figure 4 illustrates the components of Registry, the internal relations and exposed APIs. The

Thing Description Core is the main component orchestrating all other activities. It interacts

with the following components:

• DNS-SD Registration for service announcement in local networks. This is used for

zero-configuration networking14.

• Configuration Loader loads the server configuration file to setup the storage and API.

• Storage, Controller, and API are components of the Catalog package, responsible for

maintenance and view of the Thing Descriptions. The API communicated with the Auth

Server (BIMERR Identity Provider) to validate security tokens in requests.

14 https://en.wikipedia.org/wiki/Zero-configuration_networking

https://en.wikipedia.org/wiki/Zero-configuration_networking

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 20 of 67

• TD Schema Loader, TD Validator, and TD Model are components of the Thing

Description package. As the names suggest, these components are responsible for

loading of the specification and using it for validation of request bodies by the API.

The interaction between this component and the rest of the BIMERR system is illustrated in

Figure 3.

3.2 STORAGE

The data collected from the sensors deployed at both pre-validation and validation sites is

stored in a secure datastore to be available for the BIMERR services and applications such as

Data Processor, BICA and PRUBS (see Figure 3). The storage solution is intended to run both

on edge and the cloud. Availability of the sensor data in the edge is to support the analytics

and aggregation services which run on the gateways installed at the residences. On the other

hand, the data stored in BIMERR cloud is made available to the services which are deployed on

servers away from the sites and do not have direct access to edge data to perform further

processing of the transformed data. The data transformation happens at the various stages of

the data processor (see 3.3). Storage also facilitates the querying of the data with varying

sampling rates by aggregating the stored data.

There are plenty of storage solutions targeted for IoT scenarios. Apache IoTDB (Wang et.al.

2020) is an IoT native database with high performance ingestion and querying capabilities.

Time series databases such as InfluxDB15, Kdb+16, TimescaleDB17, Prometheus18 are also studied

and used in many IoT based solutions (Nasar et. al 2019, Shen et. al 2019). LinkSmart Historical

Datastore on the other hand is a lightweight, distributed component for time-series IoT data

storage supporting a standardized data format.

15 https://www.influxdata.com/

16 https://kx.com/platform/#timeseries

17 https://www.timescale.com/

18 https://prometheus.io/

https://www.influxdata.com/
https://kx.com/platform/#timeseries
https://www.timescale.com/
https://prometheus.io/

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 21 of 67

BIMERR selected and extended LinkSmart Historical Datastore (HDS) as the storage component

due to its lightweight nature and standardized data model. The core idea behind this

component is to store data as close to the producer (apartment) as possible and only migrate

the data toward fog (building level) and cloud when necessary. The component currently

provides APIs for three protocols viz. HTTP, MQTT 19 , gRPC 20 enabling request-response,

publish-subscribe, and stream messaging patterns with support for JSON21 and Protobuf22

serializations. This enables efficient message exchange between the storage nodes, IoT sensor

gateways, and consumer applications. The data model of the messages is based on Sensor

Measurements List (SenML) (Arkko et. al 2018) specification, a simple and representative format

enabling serialization of sensor data even on devices with very limited capabilities. The HTTP

APIs are protected from external access by means of Bearer Tokens obtained from the Identity

Provider with access control enforced based on requester’s profile23; the MQTT API is protected

by the MQTT broker; and the gRPC API is protected with mutual TLS 24 . APIs support

multithreaded processing enabling high ingestion and query rates and scope for enhancing

data storage backend to enable higher performance, consistency, and availability. The API also

supports aggregation operations on the queried data enabling varying sampling rates. Storage

is also integrated to open-source visualization tool Grafana with a Data Source plugin25.

19 MQTT is a standard for IoT messaging. https://mqtt.org/ provides more details.

20 A open source Remote Procedure Call (RPC) framework. More details can be obtained in

https://grpc.io/

21 https://en.wikipedia.org/wiki/JSON

22 https://en.wikipedia.org/wiki/Protocol_Buffers

23 https://github.com/linksmart/go-sec/wiki/Authorization

24 https://en.wikipedia.org/wiki/Transport_Layer_Security

25 https://github.com/linksmart/grafana-hds-datasource

https://mqtt.org/
https://grpc.io/
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Protocol_Buffers
https://github.com/linksmart/go-sec/wiki/Authorization
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://github.com/linksmart/grafana-hds-datasource

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 22 of 67

HDS is available as open source with Apache v2.0 License26. The documentation including

deployment instructions and API specifications are available publicly27. Figure 5 depicts the

component diagram of HDS. The main components are HDS Data and HDS Registry,

responsible for providing APIs for sensor data management and sensor metadata

management, respectively.

Figure 5. Component diagram of Storage (realized as Historical Datastore or HDS)

26 https://github.com/linksmart/historical-datastore

27 https://github.com/linksmart/historical-datastore/wiki

https://github.com/linksmart/historical-datastore
https://github.com/linksmart/historical-datastore/wiki

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 23 of 67

The main components of HDS are described below:

• HDS Registry is a package of components allowing registration and retrieval of

metadata related to the time series data stored in HDS. The information includes

storage configuration of the time series data. The API exposes HTTP and gRPC

endpoints to interface with an underlying storage backend. The storage backend can

be any storage system providing the required interface to the API component.

• HDS Data is a package which provides an interface to store and access historical time

indexed data. The API exposes endpoints to store and retrieve raw data points. HDS

Data exposes HTTP, and gRPC APIs supporting SenML media type. The API and media

types are extensible. The storage backend is SQL-based and can be realized by any

scalable SQL database. It also receives and handles notifications from the Registry API

about changes to time series metadata and performs necessary actions to accept

incoming data points from every source. This type of notification does not apply to

storage backends that support built-in automated aggregation.

• HDS Core is responsible for setting up HDS and its APIs. The configuration is obtained

from the Configuration Loader and is used to initialize required APIs and the OAuth

Client. This component also takes care of the graceful shutdown of all components and

service de-registration.

• Configuration Loader: This component loads and parses the JSON configuration of

HDS and its APIs. These configurations can be overridden by environment variables.

Upon start-up, the component loads the configuration object and provides an interface

for structured retrieval of the attributes.

• HDS Sync takes care of synchronizing the historical data with another HDS instance.

For instance, an HDS instance running on gateway enables synchronization component

to synchronize its data with another HDS instance running on the cloud. This uses the

configuration and the registry data to control whether a time series needs to be

synchronized or not. This module uses gRPC APIs of both registry and data packages

to perform synchronization.

3.3 DATA PROCESSOR

Data Processor is a combination of different services performing the data transformation and

routing of sensor data. As shown in Figure 3, the data processor is deployed both on premise

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 24 of 67

and on the Cloud. It interacts with Device connector, Storage and Registry to achieve the

following functionalities:

• Onboarding: Registering the devices in the BIMERR system by adding their meta data

in the form of Thing Description in Registry.

• Data Retrieval: Extraction, transformation and routing of the sensor data and logs to

the Storage.

• Outlier Detection: Detection of unusual patterns in the collected sensor data and

annotation.

• Alerting: Alerting on unexpected events related to the sensor measurements.

These versatile functionalities of the Data Processor demand the capability to act on the data

in near real-time. Hence an event driven processing platform is favored. Some of the event

driven frameworks are: Eclipse Kura28, Apache NiFi29, Flogo30, Node-RED31. Considering the ease

of installations, availability of ready-made nodes for data processing, git integration and

integrated visualization capabilities, Node-RED is chosen for partially realizing the Data

Processor.

As shown in Figure 3, the Data Processor pulls the sensor metadata from the Device

Connectors or existing wireless sensor networks (WSNs) along with static configurations to

create Thing Descriptions as part of the Onboarding process. The Data Retrieval can function

as soon as the Registry is populated with the device metadata. As part of the Data Retrieval

process, the Data Processor performs required transformations of the data pulled from the

Device Connectors and sends them to the Storage. Outlier detection currently happens as a

post processing stage and works directly on the data stored in Storage. Alerting functionality

reads the storage and creates alerts whenever there are events which needs the attention of

maintainers. Data Processor fetches the token from Identity provider and uses this to

28 https://www.eclipse.org/kura/

29 https://nifi.apache.org/

30 https://www.flogo.io/

31 https://nodered.org/

https://www.eclipse.org/kura/
https://nifi.apache.org/
https://www.flogo.io/
https://nodered.org/

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 25 of 67

authenticate itself to other middleware services. All the functionalities except Outlier Detection

are realized within Node-RED programming environment. The different functionalities

supported by the Data Processor are guided by the configuration files. The Data Processor

exposes no public networking endpoints apart from a secure graphical user interface (GUI) for

management.

The Data Processor is deployed across the cloud and local gateways. The Data Processor

running on the cloud is responsible for onboarding and the transformation of the data coming

from third party sources, as well as alerting and outlier detection. The Data Processor running

on-premises (local gateways) takes care of onboarding and transformation of the BIMERR

Device Connectors (more about Device Connectors can be found in Section 3.5). More details

about the deployment are available in Chapter 4.

3.3.1 Onboarding

Figure 6. Data Processor's onboarding sequence

Onboarding is the process of connecting devices to the network and registering them for use

inside a system. The Onboarding module is responsible for discovering newly connected

devices and registering them into the Registry. Figure 6 shows the overall sequence from

configuration by an operator until automatic registration. The initial state is the addition of

device configuration by a human operator. These are typically static metadata about devices

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 26 of 67

stored in an online location (in this case a Git repository). The static metadata includes device-

specific information such as types of devices, the interesting properties, and datatypes (See

Annex E – Data Processor Sample Device Type Configuration). Moreover, the metadata includes

project-specific information about each device, for instance the designated gateway, location

data (apartment name, room, IFC Zone ID, IFC Space ID), and association with other local

devices (See Annex F – Data Processor Sample Project Configuration for Devices). The

Onboarding module queries the metadata and tries to discover devices periodically. When a

new device is found, this results in a new registration. More often, the discovery results in

changes in the IP address of existing devices and updates to registrations. The module then

collects the information from the device and creates registration objects for Registry and

Storage components. The metadata object for Registry is also cached locally to be used by

other local Data Processor modules. The cloud components of the Middleware, as well as other

BIMERR component query this metadata directly from the Registry. As explained in Section 3.1

(Registry), the chosen model is WoT Thing Description which includes metadata of a device

along with the interaction details. An example of a Thing Description generated and registered

by the Onboarding module is available in Annex G – Sample Thing Description for a wireless

Luminance Sensor.

3.3.2 Data Retrieval

The Data Retrieval module fetches the data from the Device connectors, transforms it to the

BIMERR specific format and routes it to the Storage. The overall sequence of the Data Retrieval

is shown in Figure 7.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 27 of 67

Figure 7. High level flow of data retrieval

The Thing Descriptions (TDs) are stored locally during the onboarding process which is re-used

as part of data retrieval process. TDs have links to the interfaces exposed by the Device

Connectors or other sources. The extraction operations vary based on the sources of the data:

• Z-Wave controller has a limited number of measurements locally. The data is retrieved

using HTTP requests. Since the measurements are temporarily stored in Fibaro Home

Center Lite (HCL), it is possible also recover the historical data in case of temporary

failures of the connection between the data processor and the Fibaro HCL.

• Intesis AC Controllers are connected through TCP (Transmission Control Protocol)

based connections. The instant measurements are retrieved in the form of ASCII

messages exchanged through TCP ports. Since the AC controllers do not have internal

storage, data will be lost whenever there is a connection interruption between the data

retriever and the AC controller.

• Data from third party sources that is stored in an external server is fetched remotely by

the cloud instance of the data processor.

The data retrieval from the various sources is performed at different rates depending on the

type of the measurements. For example, the sensor measurements are fetched once in 10

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 28 of 67

minutes whereas the battery levels of the devices are retrieved only once a day (configurable).

The collected measurements are first transformed to SenML format and then submitted to the

Storage service.

3.3.3 Outlier Detection

Associated with the task of continuous data retrieval, ensuring its correctness is one of the

major requirements for subsequent data processing. Especially in the context of IoT

applications, where data is fetched from several heterogeneous sensors, it is essential to assure

a predefined level of data validity. This becomes even more important when decisions are made

based on machine learning models, which in contrast to the consideration of noise, often do

not count in or work accurately for partially invalid data. The most prominent solution to this

problem is Outlier Detection – often synonymous with Anomaly Detection. Since the data

source is mostly assumed to work as intended, Outlier Detection is used to identify rare

observations, which differ from the majority of the inspected data. Depending on the scenario,

those outliers are to be equated with invalid data items. In the scope of BIMERR, Outlier

Detection is used to annotate anomalies in retrieved sensor data (e.g., due to defective

sensors), in order to improve data validity. Note that while there is no validation data available

(e.g. labeled data), the resulting annotations are not reasoning about the related semantic or

problem, but rather are an approximation based on the type of outlier, which needs to be

validated by domain experts.

Outlier Detection is a highly researched topic, which is why the amount of research publications

and thus the number of published solutions is immense. While most solutions tackle the more

generic problem of Outlier Detection for tabular (time-independent) data, due to the context

of sensor data, in this section only a brief introduction to Outlier Detection for time series data

is given. In addition, in BIMERR no ground truth is provided with the retrieved data, which is

why the number of approaches is further restricted to unsupervised ones.

When discussing Outlier Detection methods, most approaches can be grouped into the

following categories: Probabilistic methods (Smyth et al. 1997, Aggarwal 2015), distance-based

methods (Keogh et al. 2005, Christy et al. 2015) and prediction methods (Taylor et al. 2018).

Probabilistic methods use a generative process or distribution to model the data. A common

representative of the former technique, to probabilistically model values with a temporal

dependency, is the Hidden Markov model. Apart from naïve distance-based approaches,

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 29 of 67

nearest-neighbor and clustering methods are well-known and more advanced candidates of

this category. In contrast to probabilistic methods, they are regularly used for finding local

outliers in time series data. At last, the idea of prediction-based methods is to model the

behavior of a time series, such that deviations from the predictive model are regarded as

outliers. Therefore, they are suited to find more complex outliers. Typical solutions of this

category are regression models such as for instance autoregressive models. Despite of the

approaches listed a good overview is given in (Aggarwal 2015).

Outlier Detection Architecture

While the problem associated with the aforementioned methods is frequently classified into

three groups, namely Global Outlier Detection, Contextual Outlier Detection and

Collective/Behavioral Outlier Detection, the approach in BIMERR is designed to be generic and

in addition aims for stacking methods of those categories (Ensemble Outlier Detection). In

order to allow for an individual processing of stored data streams from different sensors, the

hereafter described solution consists of the following components:

Figure 8. Outlier Detection: Core process flow

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 30 of 67

As one module of the Data Processor (see Figure 3), the Outlier Detection improves the validity

of the stored data, by identifying and annotating outliers, in order to allow for a removal in

subsequent data processing or analysis stages. Orchestrated by the App Manager and an

optional REST Server, initially given a predefined configuration file, a Config Manager creates

a Stream Processor for each listed data stream. Managed and executed by the Stream

Processor, data retrieved with the help of the Storage connector is processed by one or more

Outlier Detection algorithms in a parallel fashion, where the result is stored as an additional

time series of annotations to the storage. Although this architecture allows for the inclusion of

third-party Outlier Detection methods, the currently used Outlier Detection approach is a

custom stacked/ensemble solution in order to capture different types of anomalies. The current

choice of algorithms presented in the following section resulted from a first evaluation and the

requirement of being comparatively adaptable/generic and not too strict in the assumptions

in connection with a high number of different sensors. Methods in individual stages might

therefore be adapted or replaced in future optimizations. Figure 8 summarizes the architecture

and indicates the core flow of the processing components. All other components (with dotted

boundaries) are rather used as resource or provisioning modules.

In the context of BIMERR, the outlier detection is executed in the cloud, where the collected

data is incrementally fetched from the Storage and the individual results written into another

annotation stream of Storage.

Outlier Detection Approach

Since invalid sensor behaviors are expressed differently within the data (unreasonable values,

jumps, etc.), as a first step, global outliers are filtered out of the data by means of a fitted t-

distribution. In contrast to an often-used normal distribution, the t-distribution is less sensitive

to the majority of the data, such that sporadic deviations are not immediately defined as

outliers. A point is regarded as an outlier if the distance from the mean is greater than a

multiple of the standard deviation. As shown in Figure 9 (left) this first filtering stage eliminates

entries, that do not match the learned distribution of the overall data.

Even when data points have a sufficient probability belonging to the valid population, they

might still not have reasonable values according to their immediate local neighborhood. An

example is given in Figure 9 (right). For this reason, DBSCAN (Density-Based Spatial Clustering

of Applications with Noise) (Birant et al., 2007) is applied to a continuously sliding window of

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 31 of 67

the time series. This ensures that each point is only acceptable, if it is reachable from a

predefined minimal number of points based on a maximally allowed distance. While respective

deviations from the neighborhood are highly dependent on the context (e.g. a deviation of 1.5

could be unacceptable for values, which generally lie in the range of [0;2], but not for a range

of [-10;50]), the approach exploits the fitted distribution from the previous stage, such that the

allowed distance is a configured factor of the mean of the t-distribution.

Figure 9. Global Outlier Detection (left) vs Contextual Outlier Detection (right)

While the global Outlier Detection in an online scenario is comparatively independent of the

problem of dealing with missing data or sensor-based time gaps (e.g. due to energy saving

modes), the local Outlier Detection depends on setting a reasonable neighborhood/window

size. In future versions - also mentioned in the according section - one alternative solution is

to skip local Outlier Detection for points that have no local context due to a lack of missing

data in a predefined time window and to rely on the global solution.

As a last step, behavioral outliers, such as sudden changes in periodicity can be captured by

the Behavioral Outlier Detection module. As this stage is not yet feasible, due to the currently

limited amount of historical data and thus could lead to a potentially high number of false

positives, it is not yet applied to the data, although the possibility of an integration is already

given. One identified candidate in this context, resulting from literature research is

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 32 of 67

NeuralProphet32 , an open-source prediction library using neural networks. By creating an

accurate prediction for the given time series, those predictions could be used to identify

anomalies based on the deviation from the learned behavior.

Although the described default solution is used to identify outliers in BIMERR, each stage can

be either added, skipped or replaced by newly developed or even more accurate solutions in

future.

The implementation of the Outlier Detection was done in Python. Integrated third party

libraries were Numpy, Pandas, Scipy and Scikit-Learn. The Outlier Detection module is currently

a proprietary tool and it is envisioned to be open source in the future.

3.3.4 Alerting

Sensors and gateways deployed at the residential locations and the construction sites should

ideally be operating without human interventions. In practice, the human intervention is

inevitable considering the permanent device, network failures and unexpected events. Alerting

helps identifying these situations. Alerting module of the Data Processor analyzes the data

stored in Storage and triggers alerts whenever an unusual event is detected. The alerting

module can run both in the cloud and on-premises.

The alerts are implemented as Node-RED flows. The alerts are generated at different intervals

depending on the severity and the possibility of occurrence of the alerts. Alerts are not

generated at all if there are no events related to it. Alerts are also deduplicated so that the alert

subscribers are not overwhelmed with similar alert in a short period of time. The types of alerts

currently enabled include:

• Low battery levels: whenever the battery level of a device goes below a threshold. The

alerts are generated once a day.

• Offline devices: whenever a device or sensor does not produce data for long time.

Since different sensors produce data at varying rates, this alert duration is configured

based on the sensor types.

32 http://neuralprophet.com/

http://neuralprophet.com/

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 33 of 67

• Errors or exceptions in the gateway software: whenever there is an unexpected error

or exception in the gateway software. The errors are checked once in few hours and

alerts are triggered whenever there is an exception. If there are more exception during

this duration, the latest error is notified and with a link to navigate through the other

errors.

Figure 10. High level sequence for alerting

Figure 10 shows the overall sequence of alerting. Alerts are defined in a configuration file by

the device maintainers (see Annex D – Data Processor Alert Configuration Sample). The Data

Processor reads the configuration and loads the Thing Descriptions relevant to the defined

alert conditions. The measurements that affect the condition are fetched from the storage and

validation is performed. If an alert condition is matched, an alert event is generated. In order

not to spam the Alert Subscribers with immediate alerts events, a controlled alerting

mechanism is followed where an Alert Queue keeps all the alerts generated for a certain

duration. The alerts later are combined to send to the Alert Subscriber. Data Processor also

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 34 of 67

ensures alert deduplication to avoid unnecessary alerts. An example device alert email is

provided in Annex H – Sample Device Alert Email.

3.4 OTA SOFTWARE UPDATE AND MONITORING

There will be an instance of the BIMERR middleware in every renovation site, integrating local

services with other BIMERR components. These instances will be deployed on gateway devices

with restricted connectivity and limited interfaces. The increase in the number of middleware

instances and internal services is followed by additional complexity involved in the software

provisioning. The OTA33 Software Update and Monitoring component provides the necessary

tooling and abstraction to simplify software provisioning in remote gateways. In particular, the

component provides a graphical user interface (GUI) to the BIMERR middleware software

maintainers to perform bulk software update operations and monitor the progress and runtime

status of the components. This component is based on the existing LinkSmart Deployer34

(Apache 2.0 license) and is being extended as part of the project. The decision to extend

LinkSmart Deployer instead of other open-source solutions for software deployment and

configuration (such as Ansible, Saltslack) was based on the architecture of those component

as well as their usability. Ansible has an agent-less architecture and does not allow remote

deployment on devices behind firewalls. Neither Ansible and Saltslack offer open source and

free graphical user interfaces for deployment and monitoring of multiple devices.

This rest of this section presents the system design of OTA Update and Monitoring component.

The architecture is identical to that of LinkSmart Deployer, developed mostly within the H2020

CPSwarm Project (Tavakolizadeh et. al., 2019).

33 Over the air

34 https://github.com/linksmart/deployment-tool

https://github.com/linksmart/deployment-tool

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 35 of 67

Figure 11. Components and internal modules of the OTA Update and Monitoring component (LinkSmart

Deployer)

The OTA Software Update and Monitoring follows a client-server architecture with lightweight

client components tailored for resource constrained environments, a scalable server

component, and a graphical user interface to enhance the system usability. All components

follow a modular design with low coupling and high cohesion; see Figure 11. This enables

iterative development and maintenance of the system in a simple and structured manner. The

server-side component, called Deployment Manager, is a centralized component with

interfaces for user interaction and client communication. On the other hand, the client-side

component, called Deployment Agent, runs on every device with very low footprints. The

Deployment GUI is a web application that offers a graphical interface for the Deployment

Manager and for simplifying various deployment operations. This section briefly introduces

these components. The components are described below:

• Deployment Manager: This is the central component of the system with APIs to

communicate with other components. Even though this is a centralized component, it

is able to handle large amounts of traffic by vertical scaling. The Deployment Manager

is developed with operation concurrency in mind in such a way that available resources

are utilized efficiently during high load. Furthermore, the manager makes intensive use

of queueing mechanisms to process high load of requests without causing congestion.

This form of vertical scaling enables management of up to hundreds of targets. The

system can further scale horizontally by instantiating multiple managers and load

balancing at the API level.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 36 of 67

• Deployment Agent: The client-side component of the system that runs on every target

device (e.g. gateway). The design and implementation of the Deployment Agent place

maximum focus on reducing runtime footprints. This is to ensure that the limited

resources available on devices are kept available for other running application to the

greatest degree. The Deployment Agent is mostly responsible for receiving tasks from

the manager, validating and installing them, and afterwards managing their runtime

lifecycle. A Deployment Agent could also be used to perform builds for other devices.

Logging considerations at every step of the deployment assists developers in

discovering deployment issues and adds transparency to remote devices.

• Deployment GUI: This is a web application that offers a graphical user interface for

supporting various deployment operations. The user interface tries to tackle usability

aspects of bulk deployment by introducing novel interaction methods in the whole

deployment workflow. These involve intuitive ways to configure devices, roll out

deployments, monitor the status and progress, and to diagnose issues more effectively.

3.5 DEVICE CONNECTOR

Device Connector is a component which adds interoperability to wireless sensor network

(WSN) by abstracting the low-level communication protocols (e.g., z-wave, infra-red) and

exposing interfaces over a TCP/IP network. The external interactions with this component are

illustrated in Figure 3. The abstraction also includes serialization of primitive measurement

values in a portable format such as JSON. The exposed interfaces enable setting and reading

sensor and actuator configurations, as well as ways to read sensor measurements or set

actuations.

The middleware does not implement any connectors from scratch, but instead relies on existing

connectors or server software that comes with device controllers. The BIMERR deployments

rely on three third-party connectors: Fibaro Home Center Lite and Intesis AC Controller. These

connectors are described below.

3.5.1 Z-Wave Controller

The Z-Wave Controllers used in BIMERR project are Fibaro Home Center Lite (HCL). This device

is an embedded computer with a pre-installed server software which provides APIs and a web-

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 37 of 67

based graphical user interface (GUI) for device management and data retrieval. FIBARO uses

proprietary data models and APIs.

The Fibaro HCL is the connector and controller for the Z-Wave35 devices (e.g. power meter,

temperature sensor). The Z-Wave devices must be registered in advance and can only be

managed from the controller interfaces. The controller also provides in-memory storage

measurements collected from devices; this storage is capped at 10000 measurements.

Fibaro HCL provides a REST API to query sensor metadata and measurements. The official API

documentation is available online36. However, the documentation is incomplete and, in few

cases, invalid. A separate API documentation is served by the device itself, but that is also

incomplete and partially valid. The necessary and valid API spec was developed by the

middleware developers after inspecting the interactions between the GUI and APIs. This

specification is available internally.

The Fibaro HCL allows configuration of data retrieval from Z-Wave devices. The configuration

must be done with care and with respect to the user manual of individual device types. It is

possible to set the reporting interval on the device itself. The frequency should be decided

based on the device power source: battery-powered or a fixed power supply. More granular

results will result from a shorter reporting interval, but this decreases the battery life

considerably. A very short reporting interval would cause congestion when multiple devices

are on the network.

It is worth noting that battery-powered Z-Wave devices sleep most of the time and report few

times a day. This may lead to some inaccurate results, for example in case of temperature data,

by missing out on temperature peaks such as when a window is opened briefly or sunshine for

a short period.

35 https://en.wikipedia.org/wiki/Z-Wave

36 https://manuals.fibaro.com/knowledge-base-browse/rest-api/

https://en.wikipedia.org/wiki/Z-Wave
https://manuals.fibaro.com/knowledge-base-browse/rest-api/

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 38 of 67

3.5.2 Intesis AC Controller

Intesis Air Conditioner (AC) Controller interface gateways 37 are used to integrate air

conditioners to the BIMERR system. The AC Controllers connect to the Heating, ventilation, and

air conditioning (HVAC) devices through Infra-Red (IR) based connection and provide an

interface to an IP network over WiFi.

The IP-based clients use TCP (Transmission Control Protocol) based communication on port

3310 where ASCII messages are exchanged. The monitored parameters include:

• power state of AC

• mode of operation: heat, cool, fan, dry, auto

• set temperature

• fan speed

• vane position

• ambient temperature

• error status of the AC

• error code of the AC

The AC Controller also provides interfaces for setting the values. The protocol specification of

the controller is available in the product website38.

37 https://www.intesis.com/products/ac-interfaces/universal-gateway/universal-ascii-wifi-ac-is-ir-wmp-

1?ordercode=INWMPUNI001I000

38 https://cdn.hms-networks.com/docs/librariesprovider11/manuals-design-guides/wmp-protocol-

specifications.pdf?sfvrsn=339b5cd7_6

https://www.intesis.com/products/ac-interfaces/universal-gateway/universal-ascii-wifi-ac-is-ir-wmp-1?ordercode=INWMPUNI001I000
https://www.intesis.com/products/ac-interfaces/universal-gateway/universal-ascii-wifi-ac-is-ir-wmp-1?ordercode=INWMPUNI001I000
https://cdn.hms-networks.com/docs/librariesprovider11/manuals-design-guides/wmp-protocol-specifications.pdf?sfvrsn=339b5cd7_6
https://cdn.hms-networks.com/docs/librariesprovider11/manuals-design-guides/wmp-protocol-specifications.pdf?sfvrsn=339b5cd7_6

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 39 of 67

4. DEPLOYMENT INFRASTRUCTURE

Figure 12. The deployment diagram of core middleware components (green), enabling sensor data

management in pilot sites with varied characteristics.

The middleware is a collection of components deployed in the cloud or on-premises. The cloud

components are centralized; the rest are pilot-specific and customized accordingly. Figure 12

shows the deployment model of middleware for BIMERR. The cloud components are deployed

on an infrastructure provided by Fraunhofer FIT. These include the Identity Provider and

Registry; the central Data Processor (with Outlier Detection Module), Storage, and OTA39 SW

Update components.

 The cloud components are connected to four local deployments:

• KRIPIS Pre-validation Site: The KRIPIS smart home infrastructure by CERTH is a

standalone system with various components. This site comes with a rich set of software

39 Over the air

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 40 of 67

to query metadata and sensor measurements from cloud networking interfaces. The

middleware relies on the interfaces provided by this platform to query meta and sensor

data directly from the Data Processor. The details of the KRIPIS platform40 are available

online and beyond the scope of this document.

• CONKAT Pre-validation Site: The apartment with BIMERR wireless sensor network and

gateway setup. This site consists of a single gateway (single-board computer) which

hosts the local middleware components. The gateway connects to a Z-Wave 41

controller managing several Z-Wave sensors, and two AC Controllers paired with two

Heating, ventilation, and air conditioning (HVAC) devices.

• Budimex Pilot Site: A building with a centralized gateway (single-board computer)

which hosts the local middleware components. This gateway connects to several Z-

Wave controllers, each handling communication to several Z-Wave sensors. At the time

of writing, the execution of this deployment is pending.

• Ferrovial Pilot Site: A building with few gateways (single-board computers). Each

gateway connects to a Z-Wave control responsible for several Z-Wave sensors. At the

time of writing, the execution of this deployment is pending.

The wireless sensor network (WSN) is designed as part of T5.4 - Profiling Residents Usage of

Building Systems. The final design and reasoning behind the setup will be reported in D5.8 -

Building resident energy related behaviour profiling framework 2.

4.1 DEVELOPMENT TESTBED

A replicated setup of the wireless sensor network was deployed by Fraunhofer FIT as a

development site to support middleware development and testing activities prior to the setup

of the CONKAT pre-validation site. This setup consists of a single gateway (single-board

computer), one Z-Wave controller, 17 Z-Wave sensors (13 wall plug power meters, one of CO

40 https://smarthome.iti.gr/

41 https://en.wikipedia.org/wiki/Z-Wave

https://smarthome.iti.gr/
https://en.wikipedia.org/wiki/Z-Wave

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 41 of 67

Sensor, Door/Window Sensor, Motion Sensor, Danfoss Temperature Sensor). It is worth noting

that most Z-Wave sensors include an additional sensor reporting the local temperature.

The development site helped in validation of the selected gateway, Z-wave controller’s API and

the middleware architecture before the start of pre-validation in actual site. Moreover, it helped

driving the development of other components such as the Profiling Resident Usage of Building

System (PRUBS) using the data made available at the earlier phase.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 42 of 67

5. CONCLUSIONS AND FUTURE WORK

This document reported the current architecture and deployment of the BIMERR middleware.

The architecture was designed based on project requirements and was validated with a testbed

and the two pre-validation sites. While the overall architecture is expected to remain, the

following improvements are foreseen in form of refinements to ensure the reliability of the

wide range of functionalities throughout the project’s validation phases:

• The Registry module is based on the W3C Web of Things (WoT) Discovery standard.

The API (application programming interface) was initially in line with the standard, but

the working standard is being developed to include new specification such as for

notification and semantic search. These additions will be added to the Registry in the

form of refinements.

• The synchronization capabilities of the Storage component are currently available and

in operation. Future work may focus on simplifying the setup of the distributed storage

system by adding an automatic configuration function.

• The Outlier Detection module of the Data Processor may be further refined to better

generalize to a variety of sensor behaviours. Furthermore, the work will continue to

distinguish false positives resulted during the installation of sensors or missed

observations caused by sleeping battery-powered sensors.

• The OTA Software Update and Monitoring may be further tested in pilot sites and

improved to enable visualization of the system status with more context awareness (e.g.

building layout).

• The infrastructure in regard to pilot sites is tentative and subject to change depending

on the available networking infrastructure. The middleware configuration model may

need to change to avoid device identity collision in complex situation where gateways

are shared among several apartments.

• The various middleware components provide APIs to remove user data. Such

functionality shall be further exploited to provide building occupants the ability to

remove the profiling data completely or for a specific period to protect their privacy.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 43 of 67

6. BIBLIOGRAPHY

Aggarwal, Charu C. "Outlier analysis." Data mining. Springer, Cham, 2015.

Arkko, J., Keranen, A. and Bormann, C., 2018. Internet Engineering Task Force (IETF) C. Jennings

Request for Comments: 8428 Cisco Category: Standards Track Z. Shelby.

Birant, D. and Kut, A., 2007. ST-DBSCAN: An algorithm for clustering spatial–temporal data.

Data & knowledge engineering, 60(1), pp.208-221.

Cimmino, A., McCool, M., Tavakolizadeh, F., Toumura, K. Web of Things (WoT) Discovery. World

Wide Web Consortium, 24 November 2020. The First Public Working Draft of WoT Discovery

is https://www.w3.org/TR/2020/WD-wot-discovery-20201124/. The latest edition of WoT

Discovery is available at https://www.w3.org/TR/wot-discovery/.

Christy, A., G. Meera Gandhi, and S. Vaithyasubramanian. "Cluster based outlier detection

algorithm for healthcare data." Procedia Computer Science 50 (2015): 209-215.

Keogh, E., Lin, J., Fu, A. "Hot sax: Efficiently finding the most unusual time series subsequence."

Fifth IEEE International Conference on Data Mining (ICDM'05). Ieee, 2005.

Nasar, M. and Kausar, M.A., 2019. Suitability of influxdb database for iot applications.

International Journal of Innovative Technology and Exploring Engineering, 8(10), pp.1850-

1857.

Padhraic, S.. "Clustering sequences with hidden Markov models." Advances in neural

information processing systems. 1997.

Shen, L., Lou, Y., Chen, Y., Lu, M. and Ye, F., 2019, September. Meteorological Sensor Data

Storage Mechanism Based on TimescaleDB and Kafka. In International Conference of

Pioneering Computer Scientists, Engineers and Educators (pp. 137-147). Springer, Singapore.

Tavakolizadeh, F., Kiss, B., & Jánvári, B. (2019). D7. 4-FINAL BULK DEPLOYMENT TOOL, H2020

CPSwarm Project. Available at https://www.cpswarm.eu/wp-

content/uploads/2020/06/CPSWARM-D7.4-v1.3_FINAL_UPDATE.pdf

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 44 of 67

Taylor, Sean J., and Benjamin Letham. "Forecasting at scale." The American Statistician 72.1

(2018): 37-45.

Wang, C., Huang, X., Qiao, J., Jiang, T., Rui, L., Zhang, J., Kang, R., Feinauer, J., McGrail, K.A.,

Wang, P. and Luo, D., 2020. Apache IoTDB: time-series database for internet of things.

Proceedings of the VLDB Endowment, 13(12), pp.2901-2904.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 45 of 67

ANNEXES

ANNEX A - IDENTITY PROVIDER: TOKEN REQUEST

ACCOUNT TYPES

There are two types of accounts:

• User accounts: for human users, where the human is the resource owner. The simplest

form of authentication for user accounts is based on username/password.

• Service accounts: for services, where the service is the resource owner. Service

accounts can authenticate using either of:

o Client ID and Client Secret

o Signed JWT

o Signed JWT with Client Secret

o X509 Certificate

GRANT TYPES

Keycloak implements various OAuth 2.0 grant types or flows. In is important to choose the

right grant type depending on the application. This article provides a short introduction:

https://dzone.com/articles/the-right-flow-for-the-job-which-oauth-20-flow-sho

AUTHORIZATION CODE GRANT

For traditional web apps, single-page apps, mobile apps, modern desktop apps.

More about this grant

type: https://oauthlib.readthedocs.io/en/latest/oauth2/grants/authcode.html

From the front-end, redirect the user to:

<realm-endpoint>/protocol/openid-connect/auth?

client_id=bimerr-client&

response_type=code&

scope=openid&

redirect_uri=http://localhost:8080

https://dzone.com/articles/the-right-flow-for-the-job-which-oauth-20-flow-sho
https://oauthlib.readthedocs.io/en/latest/oauth2/grants/authcode.html

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 46 of 67

Tip: during development and for testing, the redirect_uri may set to

"urn:ietf:wg:oauth:2.0:oob" to get the code in the html body. But in

production, redirect_uri should be set to the endpoint of your application to get the

information from the query.

After a successful login, it redirects back to redirect_uri with two query parameters:

http://localhost:8080/?

session_state=<session-state>&

code=<auth-code>

The application can then use the code from the query parameter and request for a token:

curl --location --request POST '<realm-endpoint>/protocol/openid-

connect/token' \

--header 'Content-Type: application/x-www-form-urlencoded' \

--data-urlencode 'grant_type=authorization_code' \

--data-urlencode 'client_id=<client-id>' \

--data-urlencode 'code=<auth-code>' \

--data-urlencode 'redirect_uri=http://localhost:8080'

The response will include various tokens; see

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 47 of 67

Annex B – Identity Provider: Security Tokens.

RESOURCE OWNER PASSWORD CREDENTIALS GRANT

For trusted applications; user credentials are shared with the application and must be

handled with care.

More about this grant

type: https://oauthlib.readthedocs.io/en/latest/oauth2/grants/password.html

Example:

An application wants to provide access to a user in exchange for user credentials (rather than

with tokens as usual). This must be avoided unless user interaction with a browser is impossible.

Request Tokens for Demo user (using token endpoint):

curl --location --request POST '<realm-endpoint>/protocol/openid-

connect/token' \

--header 'Content-Type: application/x-www-form-urlencoded' \

--data-urlencode 'grant_type=password' \

--data-urlencode 'client_id=<client-id>' \

--data-urlencode 'username=<username>' \

--data-urlencode 'password=<password>' \

--data-urlencode 'scope=openid'

The response will include various tokens; see

https://oauthlib.readthedocs.io/en/latest/oauth2/grants/password.html

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 48 of 67

Annex B – Identity Provider: Security Tokens.

CLIENT CREDENTIALS GRANT

For machine-to-machine authorization when there is no user involvement.

More about this grant

type: https://oauthlib.readthedocs.io/en/latest/oauth2/grants/credentials.html

Example:

An application wants to fetch data for internal use (not on behalf of a user) from another

application.

Using client_id and client_secret:

curl --location --request POST '<realm-endpoint>/protocol/openid-

connect/token' \

--header 'Content-Type: application/x-www-form-urlencoded' \

--data-urlencode 'grant_type=client_credentials' \

--data-urlencode 'client_id=<client-id>' \

--data-urlencode 'client_secret=<client-secret>'

The response will include various tokens; see

https://oauthlib.readthedocs.io/en/latest/oauth2/grants/credentials.html

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 49 of 67

Annex B – Identity Provider: Security Tokens.

REFRESH TOKEN GRANT

For applications to continue to have valid tokens without further interaction with the

user.

More about this grant type: https://oauthlib.readthedocs.io/en/latest/oauth2/grants/refresh.html

Using refresh_token:

curl --location --request POST '<realm-endpoint>/protocol/openid-

connect/token' \

--header 'Content-Type: application/x-www-form-urlencoded' \

--data-urlencode 'grant_type=refresh_token' \

--data-urlencode 'client_id=<client-id>' \

--data-urlencode 'refresh_token=<refresh-token>'

The response will include various tokens; see

https://oauthlib.readthedocs.io/en/latest/oauth2/grants/refresh.html

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 50 of 67

Annex B – Identity Provider: Security Tokens.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 51 of 67

ANNEX B – IDENTITY PROVIDER: SECURITY TOKENS

Server Issuer Endpoint:

https://auth.fit.fraunhofer.de/kc/realms/bimerr

A token response with scope=openid from Keycloak typically provides the following:

{

 "access_token": "<access-token>",

 "expires_in": 300,

 "refresh_expires_in": 1800,

 "refresh_token": "<refresh-token>",

 "token_type": "bearer",

 "id_token": "<id-token>",

 "not-before-policy": 0,

 "session_state": "<session-state>",

 "scope": "openid"

}

• id_token is a JSON Web Token (JWT) token that contains information about the user.

To get the user profile, the application must validate and decode id_token

programmatically.

• access_token may be used by an application to make an API request on behalf of the

user.

• refresh_token may be used by an application to get a fresh set of security tokens on

behalf of the user when the access and id tokens expire. This enables the application to

continue to have valid tokens without further interaction with the user.

VALIDATION

Each id_token is self-contained and can be validated by the application without

communication with the authentication server.

More information on how to validate: https://auth0.com/docs/tokens/guides/validate-jwts

Tip: server's public key can be queried from the issuer endpoint (link on top of the page). This

is needed for signature validation.

DECODING

Online decoder: https://jwt.io/

Sample base64 decoded id_token <payload>:

https://auth.fit.fraunhofer.de/kc/realms/bimerr
https://jwt.io/introduction/
https://auth0.com/docs/tokens/guides/validate-jwts
https://jwt.io/

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 52 of 67

{

 "jti": "<jwt-id>",

 "exp": <expiry>,

 "nbf": 0,

 "iat": <issued-at>,

 "iss": "<realm-endpoint>",

 "aud": "<client-id>",

 "sub": "<subject>",

 "typ": "ID",

 "azp": "<client-id>",

 "auth_time": 0,

 "session_state": "<session-state>",

 "acr": "1",

 "roles": [

 "Demo Role"

],

 "name": "John Doe",

 "groups": [

 "Demo Group"

],

 "preferred_username": "jane.doe@example.com",

 "email": "jane.doe@example.com"

}

ANNEX C – IDENTITY PROVIDER: IDENTITY PROVIDER REST API

The Identity Provider (Keycloak) REST API is accessible to admin users.

Documentation: https://www.keycloak.org/docs-api/6.0/rest-api/index.html

USEFUL ENDPOINTS

Description Method + Endpoint

Get all users GET /{realm}/users

Get all groups GET /{realm}/groups

Get all realm roles GET /{realm}/roles

Get all clients GET /{realm}/clients

Get user's groups GET /{realm}/users/{id}/groups

Get user's realm roles GET /{realm}/users/{id}/role-mappings/realm

Get users of a group GET /{realm}/groups/{id}/members

https://www.keycloak.org/docs-api/6.0/rest-api/index.html

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 53 of 67

Get users with a role GET /{realm}/roles/{role-name}/users

Get user events GET /{realm}/events

Get admin events GET /{realm}/admin-events

EXAMPLES

First, get an access_token:

• For your admin user using bimerr-client and via one of the oauth grant types (see

Annex A - Identity Provider: Token Request). Since we need an access_token for realm

administration (not id_token for user profile), the scope should be set to "roles" in the

request (instead of "openid").

• For your application, use client credentials grant with a client that has appropriate

admin roles.

Example:

Using client id and client secret:

curl --location --request POST '<realm-endpoint>/protocol/openid-

connect/token' \

--header 'Content-Type: application/x-www-form-urlencoded' \

--data-urlencode 'grant_type=client_credentials' \

--data-urlencode 'client_id=<client-id>' \

--data-urlencode 'client_secret=<client-secret>' \

--data-urlencode 'scope=roles'

GET LIST OF USERS

curl --location --request GET '<realm-endpoint>/users/' \

--header 'Authorization: Bearer <access_token>'

Response:

[

 {

 "id": "<user-id>",

 "createdTimestamp": 1589290417657,

 "username": "demo@bimerr.eu",

 "enabled": true,

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 54 of 67

 "totp": false,

 "emailVerified": true,

 "firstName": "",

 "email": "demo@bimerr.eu",

 "attributes": {

 "description": [

 "This user is just for demo purposes"

]

 },

 "disableableCredentialTypes": [

 "password"

],

 "requiredActions": [],

 "notBefore": 0,

 "access": {

 "manageGroupMembership": true,

 "view": true,

 "mapRoles": true,

 "impersonate": true,

 "manage": true

 }

 },

 ...

]

GET THE GROUPS (AND SUBGROUPS) FOR DEMO USER

curl --location --request GET '<realm-endpoint>/users/<user-id>/groups' \

--header 'Authorization: Bearer <access_token>'

Response:

[

 {

 "id": "<group-id>",

 "name": "Demo Group",

 "path": "/Demo Group"

 },

 {

 "id": "<group-id>",

 "name": "Demo Subgroup",

 "path": "/Demo Group/Demo Subgroup"

 }

]

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 55 of 67

GET THE REALM ROLES FOR DEMO USER

curl --location --request GET

'https://auth.fit.fraunhofer.de/kc/admin/realms/bimerr/users/<user-

id>/role-mappings/realm' \

--header 'Authorization: Bearer <access_token>'

Response:

[

 {

 "id": "<role-id>",

 "name": "Demo Role",

 "description": "This role is for documentations only",

 "composite": false,

 "clientRole": false,

 "containerId": "bimerr"

 }

]

GET LIST OF GROUPS

curl --location --request GET

'https://auth.fit.fraunhofer.de/kc/admin/realms/bimerr/groups/' \

--header 'Authorization: Bearer <access_token>'

Response

[

 {

 "id": "<group-id>",

 "name": "Demo Group",

 "path": "/Demo Group",

 "subGroups": [

 {

 "id": "<subgroup-id>

 "name": "Demo Subgroup",

 "path": "/Demo Group/Demo Subgroup",

 "subGroups": []

 }

]

 },

 ...

]

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 56 of 67

GET DEMO GROUP'S ATTRIBUTES AND SUBGROUPS

curl --location --request GET '<realm-endpoint>/groups/<group-id>' \

--header 'Authorization: Bearer <access_token>'

Response

{

 "id": "<group-id>",

 "name": "Demo Group",

 "path": "/Demo Group",

 "attributes": {

 "country_code": [

 "DE"

],

 "description": [

 "This project is created for documentation only. It serves no

other purpose."

],

 "address": [

 "In the Cloud"

]

 },

 "realmRoles": [],

 "clientRoles": {},

 "subGroups": [

 {

 "id": "<subgroup-id>",

 "name": "Demo Subgroup",

 "path": "/Demo Group/Demo Subgroup",

 "attributes": {

 "zone_id": [

 "1234"

]

 },

 "realmRoles": [],

 "clientRoles": {},

 "subGroups": []

 }

],

 "access": {

 "view": true,

 "manage": true,

 "manageMembership": true

 }

}

GET ALL REGISTRATION EVENTS

curl --location --request GET '<realm-

endpoint>/events?type=REGISTER&dateFrom=2020-11-01T14:30Z' \

--header 'Authorization: Bearer <access_token>'

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 57 of 67

Response

[

 {

 "time": 1604309682588,

 "type": "REGISTER",

 "realmId": "bimerr",

 "clientId": "account",

 "userId": "<user-id>",

 "ipAddress": "172.18.0.2",

 "details": {

 "auth_method": "openid-connect",

 "auth_type": "code",

 "register_method": "form",

 "redirect_uri": "<realm-endpoint>/account/login-redirect",

 "code_id": "<code-id>",

 "email": "user2@example.com",

 "username": "user2@example.com"

 }

 },

 {

 "time": 1604309677406,

 "type": "REGISTER",

 "realmId": "bimerr",

 "clientId": "account",

 "userId": "<user-id>",

 "ipAddress": "172.18.0.2",

 "details": {

 "auth_method": "openid-connect",

 "auth_type": "code",

 "register_method": "form",

 "redirect_uri": "<realm-endpoint>/account/login-redirect",

 "code_id": "<code-id>",

 "email": "user1@example.com",

 "username": "user1@example.com"

 }

 }

]

Look into Keycloak docs (Under Resources/Realm Admin, Find GET /{realm}/events) for

other query arguments.

GET ROLE AND GROUP CHANGE EVENTS

curl --location --request GET '<realm-endpoint>/admin-

events?resourceTypes=GROUP_MEMBERSHIP&resourceTypes=REALM_ROLE_MAPPING&date

From=2020-11-05T14:30Z' \

--header 'Authorization: Bearer <access_token>'

Response

[

 {

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 58 of 67

 "time": 1604589885000,

 "realmId": "bimerr",

 "authDetails": {

 "realmId": "master",

 "clientId": "<client-id>",

 "userId": "<user-id>",

 "ipAddress": "172.18.0.2"

 },

 "operationType": "CREATE",

 "resourceType": "GROUP_MEMBERSHIP",

 "resourcePath": "users/<user-id>/groups/<group-id>"

 },

 {

 "time": 1604589202000,

 "realmId": "bimerr",

 "authDetails": {

 "realmId": "master",

 "clientId": "<client-id>",

 "userId": "<user-id>",

 "ipAddress": "172.18.0.2"

 },

 "operationType": "CREATE",

 "resourceType": "REALM_ROLE_MAPPING",

 "resourcePath": "users/<user-id>/role-mappings/realm"

 }

]

Look into Keycloak docs (Under Resources/Realm Admin, Find GET /{realm}/admin-events)

for other query arguments.

CLIENT CONFIGURATION

A client needs the following configurations to be able to access the Keycloak Admin API using

an access_token obtained with Client Credentials flow:

Access type: Confidential

Service Account Enabled

Service Account Roles:

• For realm-management client → view-users, view-clients

Scope "roles" must be set as default scope, or set in token requests.

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 59 of 67

ANNEX D – DATA PROCESSOR ALERT CONFIGURATION SAMPLE

Serialization Format: YAML

Format:

<event-type>:

<bimerrProperty>:

<comparison-operator>: <event-specific-operand>

Time constants

1-hour: &1h 3600

1-day: &1d 86400

1-week: &1w 604800

Battery alert when battery level is less than or equal (lte) to value

lowBattery:

 batteryLevel:

 lte: 20

Offline alert when offline period for property is greater than or equal (gte

) to value in seconds

offlinePeriod:

 pingTime:

 gte: *1h

 onlineState:

 gte: *1h

 temperature:

 gte: *1d

 luminacne:

 gte: *1d

 motionState:

 gte: *1d

 powerConsumption:

 gte: *1d

 powerState: # for ac controller, only one measurement is considered

 gte: *1d

 windowState:

 gte: *1w

 doorState:

 gte: *1w

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 60 of 67

ANNEX E – DATA PROCESSOR SAMPLE DEVICE TYPE CONFIGURATION

Serialization Format: YAML

Each device type is defined as one array element

Attributes:

* `vendor` is the device vendor/manufacturer.

* `vendorType` is device type set by the vendor.

* `vendorProperty` is equivalent to: fibaro type, kripis measurementID, inte

sis property type

* `bimerrType` is the BIMERR device type. Enum: multiSensor, windowSensor, d

oorSensor, heatDetector, wallPlug, COSensor, energyMeter, acController, intern

etGateway, zwaveGateway

* `bimerrProperty` is the BIMERR measurement type.

FIBARO HCL enum: temperature, luminance, seismicLevel, accelerationLevel,

 motionState, windowState, doorState, alarmState, powerConsumption, onlineStat

e

Intesis ACC enum: powerState, mode, setTemperature, fanSpeed, vanePositio

nVertical, vanePositionHorizontal, errStatus, errCode

Internet Gateway enum: pingTime, noderedError, unattendedUpgradesError, s

shTunnelError, fibaroTunnelError, intensisDiscoveryError

* `dataType` is the primitive measurement data type. Enum: float, bool, stri

ng

* `unit` is the measurement according to SenML Units Registry (https://tools

.ietf.org/html/rfc8428#section-12.1) (apart from MMI).

* `description` is the description of the sensor

-

 vendor: bimerr

 # vendorType:

 # vendorProperty:

 bimerrType: internetGateway

 bimerrProperty: pingTime

 dataType: float

 # unit:

 description: Ping time from Internet Gateway to 8.8.8.8

-

 vendor: fibaro

 # vendorType:

 vendorProperty: com.fibaro.zwavePrimaryController

 bimerrType: zwaveGateway

 bimerrProperty: onlineState

 dataType: bool

 # unit:

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 61 of 67

 description: Fibaro HCL state collected by Internet Gateway

-

 vendor: fibaro

 vendorType: com.fibaro.multilevelSensor

 vendorProperty: com.fibaro.temperatureSensor

 bimerrType: multiSensor

 bimerrProperty: temperature

 dataType: float

 unit: Cel

 description: Temperature measurement by multi/motion sensor

-

 vendor: intesis

 vendorType:

 vendorProperty: ONOFF

 bimerrType: acController

 bimerrProperty: powerState

 dataType: string

 # unit:

 description: AC power state (ON|OFF)

-

 vendor: intesis

 vendorType:

 vendorProperty: MODE

 bimerrType: acController

 bimerrProperty: mode

 dataType: string

 # unit:

 description: AC mode (HEAT|COOL|FAN|DRY|AUTO)

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 62 of 67

ANNEX F – DATA PROCESSOR SAMPLE PROJECT CONFIGURATION FOR DEVICES

Serialization Format: YAML

This file contains the project information.

projectID is the unique ID on BIMERR Identity Provider.

properties object lists details of gateways, rooms, as well as other device-

specific attributes.

Each entry is associated with a gateway, an apartment and one or more rooms

.

Each room can be associated with devices in order to add additional parame

ters

Description of attributes in each properties entry:

- gatewayType: # Either of: fibaro, intesis

gatewayName:

apartmentName:

ifcZoneID:

macAddress: # Intesis only, format: 123456ABCDEF

rooms:

- roomID: # For fibaro only; it must match fibaro's Room ID. Not used fo

r Intesis.

roomName:

ifcSpaceID:

deviceOverrides: # To add additional metadata. For intesis, it is a pa

rtial source of device info.

- deviceID: # For fibaro, it must match fibaro's Device ID. For inte

sis, it must be unique across all controllers

deviceName: # Intesis only

loadType: # Either of: space, apartment, DHW, HVAC, light, other

projectID: a14ebdfb-6846-4066-9029-9d391463438a

properties:

- gatewayType: fibaro

 gatewayName: Bimerr

 apartmentName: apt1

 ifcZoneID: zone1

 rooms:

 - roomID: 219

 roomName: Living Room

 ifcSpaceID: space1

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 63 of 67

 - roomID: 220

 roomName: Bedroom 1 (master)

 ifcSpaceID: space2

 deviceOverrides:

 - deviceID: 8

 loadType: HVAC

 - roomID: 221

 roomName: Bedroom 2

 ifcSpaceID: space3

 deviceOverrides:

 - deviceID: 6

 loadType: HVAC

 - roomID: 222

 roomName: Office

 ifcSpaceID: space4

 - roomID: 223

 roomName: Kitchen

 ifcSpaceID: space5

 deviceOverrides:

 - deviceID: 4

 loadType: HVAC

 - roomID: 224

 roomName: Corridor

 ifcSpaceID: space6

- gatewayType: intesis

 gatewayName: acController-1

 apartmentName: apt1

 ifcZoneID: zone1

 macAddress: CC3F1D0214B2

 rooms:

 - roomName: Living room

 ifcSpaceID: space1

 deviceOverrides:

 - deviceID: 1

 deviceName: Living Room AC

 loadType:

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 64 of 67

ANNEX G – SAMPLE THING DESCRIPTION FOR A WIRELESS LUMINANCE SENSOR

Serialization Format: JSON

{
 "@context": [
 "https://www.w3.org/2019/wot/td/v1",
 "https://bimerr.fit.fraunhofer.de/td-context"
],
 "apartmentName": "phil",
 "created": "2020-09-10T16:34:02.458250535Z",
 "id": "de:fitdev:Fib-Philip:8",
 "ifcSpaceID": "n/a",
 "ifcZoneID": "n/a",
 "links": [
 {
 "href": "http://192.168.10.170/api/devices/8",
 "rel": "fibaroDeviceEndpoint"
 },
 {
 "href": "http://192.168.10.170/api/panels/event?deviceID=9",
 "propertyName": "motionState",
 "rel": "fibaroEventEndpoint"
 },
 {
 "href": "http://192.168.10.170/api/panels/event?deviceID=10",
 "propertyName": "temperature",
 "rel": "fibaroEventEndpoint"
 },
 {
 "href": "http://192.168.10.170/api/panels/event?deviceID=11",
 "propertyName": "luminance",
 "rel": "fibaroEventEndpoint"
 },
 {
 "href": "http://192.168.10.170/api/panels/event?deviceID=12",
 "propertyName": "seismicLevel",
 "rel": "fibaroEventEndpoint"
 }
],
 "meta": {
 "fibaro:created": "2021-01-22T09:14:15.000Z",
 "fibaro:deviceBaseType": "com.fibaro.device",
 "fibaro:deviceID": 8,
 "fibaro:deviceType": "com.fibaro.zwaveDevice",
 "fibaro:gatewayName": "Fib-Philip",
 "fibaro:modified": "2021-01-22T09:14:15.000Z",
 "fibaro:roomID": 224,
 "fibaro:roomName": "Living room",
 "fibaro:sectionID": 221,
 "fibaro:sectionName": "First floor"
 },
 "modified": "2021-02-08T19:17:04.293101009Z",
 "projectID": "c64a1750-8da6-4cd7-a9d5-dd0437ae3cf6",
 "properties": {
 "batteryLevel": {
 "description": "Device battery level in percentage",
 "forms": [
 {
 "contentType": "application/senml+json; dataType=float",
 "href": "https://bimerr.fit.fraunhofer.de/historical-datastore/data/de:fitdev:Fib-
Philip:8:batteryLevel",
 "op": [
 "readproperty"
]
 },

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 65 of 67

 {
 "contentType": "application/senml+json; dataType=float",
 "href": "http://172.17.0.1:8085/data/de:fitdev:Fib-Philip:8:batteryLevel",
 "op": [
 "readproperty",
 "writeproperty"
],
 "security": "local_access"
 }
],
 "unit": "%EL"
 },
 "luminance": {
 "description": "Light intensity measurement by multi/motion sensor",
 "forms": [
 {
 "contentType": "application/senml+json; dataType=float",
 "href": "https://bimerr.fit.fraunhofer.de/historical-datastore/data/de:fitdev:Fib-
Philip:8:luminance",
 "op": [
 "readproperty"
]
 },
 {
 "contentType": "application/senml+json; dataType=float",
 "href": "http://172.17.0.1:8085/data/de:fitdev:Fib-Philip:8:luminance",
 "op": [
 "readproperty",
 "writeproperty"
],
 "security": "local_access"
 }
],
 "unit": "lx"
 },
 "motionState": {
 "description": "Motion state (true|false) by multi/motion sensor",
 "forms": [
 {
 "contentType": "application/senml+json; dataType=bool",
 "href": "https://bimerr.fit.fraunhofer.de/historical-datastore/data/de:fitdev:Fib-
Philip:8:motionState",
 "op": [
 "readproperty"
]
 },
 {
 "contentType": "application/senml+json; dataType=bool",
 "href": "http://172.17.0.1:8085/data/de:fitdev:Fib-Philip:8:motionState",
 "op": [
 "readproperty",
 "writeproperty"
],
 "security": "local_access"
 }
]
 },
 "seismicLevel": {
 "description": "Seismic intensity in modified Mercalli intensity scale (MMI) by multi/motion
sensor",
 "forms": [
 {
 "contentType": "application/senml+json; dataType=float",
 "href": "https://bimerr.fit.fraunhofer.de/historical-datastore/data/de:fitdev:Fib-
Philip:8:seismicLevel",
 "op": [
 "readproperty"
]
 },

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 66 of 67

 {
 "contentType": "application/senml+json; dataType=float",
 "href": "http://172.17.0.1:8085/data/de:fitdev:Fib-Philip:8:seismicLevel",
 "op": [
 "readproperty",
 "writeproperty"
],
 "security": "local_access"
 }
],
 "unit": "MMI"
 },
 "temperature": {
 "description": "Temperature measurement by multi/motion sensor",
 "forms": [
 {
 "contentType": "application/senml+json; dataType=float",
 "href": "https://bimerr.fit.fraunhofer.de/historical-datastore/data/de:fitdev:Fib-
Philip:8:temperature",
 "op": [
 "readproperty"
]
 },
 {
 "contentType": "application/senml+json; dataType=float",
 "href": "http://172.17.0.1:8085/data/de:fitdev:Fib-Philip:8:temperature",
 "op": [
 "readproperty",
 "writeproperty"
],
 "security": "local_access"
 }
],
 "unit": "Cel"
 }
 },
 "roomName": "Living room",
 "security": "bearer_sc",
 "securityDefinitions": {
 "basic_sc": {
 "in": "header",
 "scheme": "basic"
 },
 "bearer_sc": {
 "in": "header",
 "scheme": "bearer"
 },
 "local_access": {
 "description": "Binding of server to localhost or docker network interfaces",
 "scheme": "nosec"
 }
 },
 "site": "fitdev",
 "title": "Motion Sensor",
 "type": "multiSensor"
}

Deliverable D8.3 02/2021 FIT

BIMERR project GA #820621

Page 67 of 67

ANNEX H – SAMPLE DEVICE ALERT EMAIL

Alert Typ

e

Devic

e Title

Device/Property Last

Measureme

nt

Timestamp

offlinePerio

d

Kitche

n Door

gr:conkat:Bimerr:54:temperature 18.8 2021-01-

20T11:15:35.000

Z

offlinePerio

d

Wall

Plug

gr:conkat:Bimerr:6:powerConsumpt

ion

0 2021-01-

20T11:20:00.000

Z

offlinePerio

d

Wall

Plug

gr:conkat:Bimerr:8:powerConsumpt

ion

4.9 2021-01-

20T11:20:00.000

Z

offlinePerio

d

Wall

Plug

gr:conkat:Bimerr:4:powerConsumpt

ion

0.6 2021-01-

20T11:20:00.000

Z

You have received this email because of your Device Maintainer role for conkat project in BIMERR. To opt out, please

send an email to bimerr-alerts-opt-out@fit.fraunhofer.de.

mailto:bimerr-alerts-opt-out@fit.fraunhofer.de?subject=Opt%20out%20of%20Node-RED%20errors%20for%20conkat

	List of Figures
	Executive Summary
	1. Introduction
	2. Middleware for Identity Management
	2.1 Identity Provider

	3. Middleware for Data Management
	3.1 Registry
	3.2 Storage
	3.3 Data Processor
	3.3.1 Onboarding
	3.3.2 Data Retrieval
	3.3.3 Outlier Detection
	3.3.4 Alerting

	3.4 OTA Software Update and Monitoring
	3.5 Device Connector
	3.5.1 Z-Wave Controller
	3.5.2 Intesis AC Controller

	4. Deployment Infrastructure
	4.1 Development Testbed

	5. Conclusions and Future Work
	6. Bibliography
	Annexes
	Annex A - Identity Provider: Token Request
	Account Types
	Grant Types
	Authorization Code Grant
	Resource Owner Password Credentials Grant
	Client Credentials Grant
	Refresh Token Grant

	Annex B – Identity Provider: Security Tokens
	Validation
	Decoding

	Annex C – Identity Provider: Identity Provider REST API
	Useful Endpoints
	Examples
	Get list of users
	Get the groups (and subgroups) for demo user
	Get the realm roles for demo user
	Get list of groups
	Get Demo Group's attributes and subgroups
	Get all registration events
	Get role and group change events
	Client Configuration

	Annex D – Data Processor Alert Configuration Sample
	Annex E – Data Processor Sample Device Type Configuration
	Annex F – Data Processor Sample Project Configuration for Devices
	Annex G – Sample Thing Description for a wireless Luminance Sensor
	Annex H – Sample Device Alert Email

