

This project has received funding from the European Union’s Horizon 2020 Research

and innovation programme under Grant Agreement n°820621

Project Acronym: BIMERR

Project Full Title: BIM-based holistic tools for Energy-driven Renovation of

existing Residences

Grant Agreement: 820621

Project Duration: 45 months

DELIVERABLE D6.5

Renovation Process Simulation Tool 2

Deliverable Status: FINAL

File Name: BIMERR_D6.5-v1.00.docx

Due Date: 30/06/2021 (M30)

Submission Date: 02/07/2021 (M31)

Task Leader: BOC (T6.3)

Dissemination level

Public X

Confidential, only for members of the Consortium (including the Commission Services)

Ref. Ares(2021)4325254 - 02/07/2021

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 2 of 104

Disclaimer

BIMERR project has received funding from the European Union’s Horizon 2020 Research and

innovation programme under Grant Agreement n°820621. The sole responsibility for the

content of this publication lies with the authors. It does not necessarily reflect the opinion of

the European Commission (EC). EC is not liable for any use that may be made of the information

contained therein.

The BIMERR project consortium is composed of:

FIT
Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung
E.V.

Germany

CERTH Ethniko Kentro Erevnas Kai Technologikis Anaptyxis Greece

UPM Universidad Politecnica De Madrid Spain

UBITECH Ubitech Limited Cyprus

SUITE5 Suite5 Data Intelligence Solutions Limited Cyprus

HYPERTECH
Hypertech (Chaipertek) Anonymos Viomichaniki Emporiki Etaireia
Pliroforikis Kai Neon Technologion

Greece

MERIT Merit Consulting House Sprl Belgium

XYLEM Xylem Science And Technology Management Gmbh Austria

CONKAT
Anonymos Etaireia Kataskevon Technikon Ergon, Emporikon
Viomichanikonkai Nautiliakon Epicheiriseon Kon'kat

Greece

BOC Boc Asset Management Gmbh Austria

BX Budimex Sa Poland

UOP University Of Peloponnese Greece

UEDIN University of Edinburgh United Kingdom

NT Novitech As Slovakia

UCL University College London United Kingdom

FER Ferrovial Agroman S.A Spain

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 3 of 104

AUTHORS LIST

Leading Author (Editor)

Surname First Name Beneficiary Contact email

Falcioni Damiano BOC damiano.falcioni@boc-eu.com

Co-authors (in alphabetic order)

Surname First Name Beneficiary Contact email

1 Chávez-Feria Feria UPM serge.chavez.feria@upm.es

2 Demeter Dominik NT demeter_dominik@novitech.sk

3 Kanóc Csaba NT Kanoc@novitechgroup.sk

4 Lampathaki Fenareti SUITE5 fenareti@suite5.eu

5 Poveda-Villalón María UPM mpoveda@fi.upm.es

6 Vergeti Danae UBITECH vergetid@ubitech.eu

7 Woitsch Robert BOC robert.woitsch@boc-eu.com

REVIEWERS LIST

List of Reviewers (in alphabetic order)

Surname First Name Beneficiary Contact email

1 Lampathaki Fenareti SUITE5 fenareti@suite5.eu

2 Bountouni Nefeli SUITE5 nefeli@suite5.eu

3 Giannakis Giorgos Hypertech g.giannakis@hypertech.gr

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 4 of 104

REVISION CONTROL

Version Author Date Status

0.1 BOC 09/04/2021 ToC

0.2 BOC 11/05/2021 Updated content from D6.4

0.3 BOC 15/05/2021 Added Verification component

0.4 BOC 17/05/2021 Added Service Description model

0.5 BOC 08/06/2021 Integrated UPM content

0.6 BOC 09/06/2021 Integrated SUITE5 content

0.7 BOC 10/06/2021 Integrated UBITECH and NT content

0.8 BOC 28/06/2021 Integrated first review comments

0.9 BOC 29/06/2021 Integrated second review comments

1.0 BOC 30/06/2021 Finalization for submission

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 5 of 104

TABLE OF CONTENTS

List of Figures.. 8

List of Tables ... 12

ACRONYMS ... 13

EXECUTIVE SUMMARY .. 14

1. Introduction ... 16

1.1 Objectives of the Deliverable ... 16

1.2 Introduction of Taxonomy and Methodology ... 18

1.2.1 Design Tool for Renovation Processes .. 19

1.2.2 Monitoring and Evaluation Tool for Renovation Processes .. 19

1.2.3 Innovation and Reflection Tools for Renovation Processes .. 20

1.2.4 Development Methodology .. 21

1.3 Updates to the first version of PWMA .. 22

2. Design Tools for Renovation Process .. 23

2.1 Renovation Process and Workflow Design Tool .. 23

2.2 Renovation Process KPI Design Tool ... 28

2.3 Models Services Marketplace ... 37

3. Monitoring and Evaluation Tools for Renovation Processes 39

3.1 Renovation Processes-Oriented KPI Dashboards ... 39

3.1.1 Models-based Monitoring Dashboards Demonstration ... 40

3.1.2 Models-based Monitoring Dashboards Architecture .. 43

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 6 of 104

3.2 Simulation Tools for Renovation Processes ... 49

3.2.1 Simulation Tool Demonstration Use Case ... 49

3.2.2 Simulation tool architecture ... 54

3.3 Formal Verification Tools for Renovation Processes .. 57

3.3.1 Formal Verification Tool Demonstration Use Case ... 57

3.3.2 Verification Tool Architecture ... 62

4. Reflection and Innovation Tools For Renovation Processes 65

4.1 Process Mining of Renovation Process.. 65

4.1.1 Logs preparation for Celonis ... 66

4.1.2 Creation of Analysis Workspace .. 67

4.2 Collaborative Reflection of Renovation Process .. 70

4.2.1 Model Wiki Application ... 70

4.2.2 Model Wiki Sample Use Case .. 74

5. Integration with BIMERR Tools ... 76

5.1 Integration with BIF ... 76

5.2 Integration with Ontology .. 77

5.2.1 KPI Ontology Description .. 78

5.2.2 Renovation Process Ontology Description .. 80

5.3 Integration with the Adaptive Workflow Management and Automation tool 81

5.4 Open Integration Framework ... 83

5.4.1 Microservice Definition Model Type ... 86

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 7 of 104

6. Catalogue of Tools for Renovation Processes .. 91

6.1 Design Tools .. 91

6.1.1 Community version of the Renovation process and KPIs design tool ... 91

6.1.2 Cloud-Based Renovation Process Design Tool .. 92

6.1.3 Standalone package of the Cloud Renovation Process Design Tool ... 92

6.2 Monitoring, Evaluation, Reflection, and Innovation Tools ... 93

6.3 Open Integration Framework OLIVE ... 94

7. Conclusion and Outlook.. 96

BIBLIOGRAPHY .. 97

Annex ... 98

BPMN Mapping to Petri Net ... 98

Properties to Computation Tree Logic Mapping .. 102

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 8 of 104

LIST OF FIGURES

Figure 1 - Ecosystem Overview .. 18

Figure 2 - Digital Twin Evolution (Tchana de Tchana et al., 2019) 19

Figure 3 - Renovation Process Design Tool Community Version .. 24

Figure 4 - Renovation Process Cloud Modelling Environment .. 25

Figure 5 - Renovation Process Cloud Modelling Environment Main Interface 26

Figure 6 - Renovation Process Cloud Modelling Environment Design Interface 27

Figure 7 - KPI model .. 29

Figure 8 - Goals attributes .. 29

Figure 9 - KPI Attributes .. 30

Figure 10 - Trustability Attributes .. 31

Figure 11 - Data Calculation Model ... 32

Figure 12 - Metric Attributes .. 34

Figure 13 - Data Items Attributes ... 35

Figure 14 - Renovation Process KPIs Design Tool Community Version 36

Figure 15 - Renovation Process Marketplace ... 37

Figure 16 - Renovation Process Marketplace Architecture.. 38

Figure 17 - Renovation KPI Cockpit Use Case ... 39

Figure 18 - Backward-looking Monitoring and Forward-Looking Simulation of KPI-

Scaffold Costs .. 41

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 9 of 104

Figure 19 - Simulation Output for KPIs.. 42

Figure 20 - Facade Renovation Status KPI Dashboard ... 43

Figure 21 - KPIs Dashboard architecture .. 44

Figure 22 - KPI Dashboard Chart Widget .. 45

Figure 23 - KPI Dashboard Table Widget .. 46

Figure 24 - KPI Dashboard Image Widget ... 46

Figure 25 - KPI Dashboard Tree Widget .. 47

Figure 26 - KPI Dashboard Widgets Combined. ... 47

Figure 27 - KPI Trustability Details. .. 48

Figure 28 - Renovation Process Simulation Inputs... 49

Figure 29 - Renovation Process Simulation Input C_START_EVENT 50

Figure 30- Renovation Process Simulation Input C_TASK .. 51

Figure 31 - Renovation Process Simulation Input Calculation .. 52

Figure 32 - Renovation Process Simulation General Results ... 52

Figure 33 - Renovation Process Simulation Detailed Results .. 54

Figure 34 - Renovation Process Simulation Engine Architecture .. 55

Figure 35 - Formal Verification Input ... 57

Figure 36 - Deadlock Analysis .. 58

Figure 37 - Unboundedness Analysis .. 59

Figure 38 - Reachability Analysis .. 60

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 10 of 104

Figure 39 - Path Existence Analysis ... 61

Figure 40 - Formal Verification Architecture ... 62

Figure 41 - Celonis Logs Preparation... 66

Figure 42 - Celonis Analysis Workspace for BIMERR .. 68

Figure 43 - Excel Output ... 69

Figure 44 - Model Wiki Use Case Scenario .. 71

Figure 45 - Model Wiki Architecture .. 72

Figure 46 - Facade Renovation Process to Wiki .. 74

Figure 47 - Wiki Pages Generated for the Facade Renovation Process 75

Figure 48 - Comments Imported for the Building Scaffold Task of the Facade Renovation

Process ... 75

Figure 49 - Example of KPI Ontology Population ... 80

Figure 50 - Example of Renovation Process Ontology Population 81

Figure 51 - Services Configuration UI in Workflow ... 82

Figure 52 - Olive High Level Overview ... 84

Figure 53 - Olive Microservice Controller Architecture .. 86

Figure 54 - Microservice Definition Model Sample .. 87

Figure 55 - Microservice Definition Model, Input and Output Attributes 88

Figure 56 - Microservice Definition Model, Start and Call Attributes 89

Figure 57 - Microservice Definition Model, Publishing feature ... 90

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 11 of 104

Figure 58 - ADOxx Olive Homepage .. 94

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 12 of 104

LIST OF TABLES

Table 1 - Renovation Process Simulation General Results Details 53

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 13 of 104

ACRONYMS

Acronym Meaning

API Application Programming Interface

BIF BIMERR Interoperability Framework

BIMERR BIM-based holistic tools for Energy-driven Renovation of existing Residences

BPMN Business Process Model Notation

FaaS Function as a Service

KPI Key Performance Indicator

MIME Multipurpose Internet Mail Extensions

OSGi Open Service Gateway initiative

PWMA Process & Workflow Modelling & Automation

DSL Domain Specific Language

PNML Petri Net Modelling Language

CTL Computation Tree Logic

EBNF Extended Backus-Naur form

PQL Publisher Query Language

SOAP Simple Object Access Protocol

REST Representational State Transfer

ABL ADOxx Binary Language

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 14 of 104

EXECUTIVE SUMMARY

This document describes the final set of renovation process management tools, which we

consider as an ecosystem of applications, Software as a Service offerings, microservices,

as well as 3rd party applications, providing renovation specific features.

The provided renovation process management environment has two types of flexibility to

enable configuration and adaptation. First, we use the meta-modelling platform ADOxx

that enables the configuration of Process modelling notation, Key Performance Indicator

(KPI) modelling notation and Data modelling notation by providing a full-fledged process

model repository. ADOxx uses conceptual meta-models to define the modelling language,

hence the modelling language can be adapted to the needs of BIMERR and aligned with

the BIMERR ontology to use the same semantics. This semantic alignment enables the

seamless use of data that come from other BIMERR applications. The ADOxx platform can

be downloaded for academic use for free at adoxx.org and the corresponding BIMERR

specific configurations are provided for download in the so-called development space of

the developer community on the dedicated adoxx.org webpage.

To provide features, services, and tools for the ecosystem around the process

management platform, we used the Microservice framework Olive. In particular, using

Olive, we provide:

(i) Features like (a) the knowledge-based simulation and formal verification of

renovation processes, (b) the dashboard visualisation of renovation process

status, (c) the co-creative reflection of the renovation process using XWIKI and

generating pages from models and feedback comments from pages into the

models.

(ii) Connectors to third party tools like (a) to export process models for execution

to the BIMERR Adaptive Workflow Management and Automation tool, (b) to

import data from the BIMERR Interoperability framework (BIF) for displaying

the status of the renovation process, (c) to interact with a Process Mining tool

that analyses the process execution after the renovation process has been

completed in order to create lessons learned for the next renovation project.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 15 of 104

The functional capabilities have been defined in the corresponding D6.3 “Adaptive

Renovation Process & Workflow Models 2”. Therefore, the deliverable at hand explains

the technical concepts, the tool functionality of the requested features and provides the

different applications for download at www.adoxx.org.

http://www.adoxx.org/

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 16 of 104

1. INTRODUCTION

1.1 OBJECTIVES OF THE DELIVERABLE

This deliverable provides the final set of Features for Renovation Process Modelling.

This deliverable corresponds with Deliverable D6.3 “Adaptive Renovation Process &

Workflow Models 2” and provides the technological basis to manage the renovation

process. Therefore, this document focuses on the tools, infrastructures and technical

frameworks that are provided to enable renovation process management.

Process management is often performed by a standardized tool, mainly providing design

features for process notations such as BPMN (Business Process Modelling Notation).

Although for some cases those standard drawing tools may be sufficient, we observe

challenges when aiming to interpret the models.

In this case the process models require to be stored with the corresponding semantic

description (in our case we use conceptual meta-models), hence simple drawing tools are

not sufficient. Full-fledged modelling tools typically provide a model repository with the

capability to parametrize the models and each individual object inside the model. This

enables key features of process management such as simulations, formal verification and

model transformation but on the other side require sophisticated repository technology.

Model-driven tools can follow one of two complementary approaches. The first one is the

standardized tool approach, aiming to implement a standard tool according to a standard

modelling notation with standard features. The second approach is the provisioning of

configurable and flexible tools that can provide both standard modelling notation and

features, as well as personalized and configurable modelling approaches and

personalized tool features. We provide the latter, as it enables flexibility in both: (a) the

modelling languages as well as (b) the modelling features. On the other hand, we can

always downgrade our tool by instantiating a particular standard.

This deliverable introduces the meta-models and tools for renovation process simulation

created around the platform ADOxx, which is openly available for academic use in the

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 17 of 104

world-wide community ADOxx.org1. Results of BIMERR, in form of the corresponding

prototypes introduced in this deliverable are therefore available for open use and partly

open source in this community. The meta-modelling approach enables the configuration

of the modelling language and thus allowing a personalised configuration of the platform

modelling language. In our case we adapted the modelling language BPMN to also include

KPIs relevant concepts and semantically enriched the modelling languages for alignment

with the BIMERR ontologies and data models as introduced in the BIMERR Deliverable

D4.3 and followed in BIF.

Besides the flexibility of the meta-model, we introduce the microservice Framework Olive2

that enables the flexible configuration and personalization of the functional capabilities

of the application. The application consists of a set of cloud offerings, in combination with

tools and microservices, hence we follow the idea of an “ecosystem” that has the process

management application in the center and integrates and uses several microservices and

additional tools to personalize the functional capabilities.

The functionalities introduced in this deliverable in particular focus on the simulation and

formal verification of renovation processes, on the monitor of their progress respect to

the simulated cases and on their improvements analyzing the execution logs and the

feedbacks from stakeholders. Additionally, Olive enables the integration with the BIMERR

Adaptive Workflow Management and Automation tool described in BIMERR deliverable

D6.7 and the integration with BIF described in BIMERR deliverable D4.9.

This deliverable describes the final set of ADOxx meta-modelling configuration, tools and

microservices composing the PWMA, to provide an ecosystem for renovation process

management.

1 https://adoxx.org/live/web/bimerr/overview

2 https://www.adoxx.org/live/olive

https://adoxx.org/live/web/bimerr/overview
https://www.adoxx.org/live/olive

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 18 of 104

1.2 INTRODUCTION OF TAXONOMY AND METHODOLOGY

The application ecosystem consists of the main application and the supporting

microservices framework. The main application in our setup is the design component

realised on the meta-modelling platform ADOxx providing all necessary modelling

features. The microservice framework Olive includes a set of identified features to

support the renovation process management. Those features are either implemented as

microservices that provide the requested feature or as microservices that interact with a

corresponding third-party tool.

Figure 1 - Ecosystem Overview

Figure 1 introduces the PWMA ecosystem that is provided in the context of this deliverable

through a running demonstrator as well as the corresponding ADOxx configuration files

and Olive based Microservices for BIMERR as downloadable packages on ADOxx.org.

The ecosystem proposed in Figure 1 reflects the classification of digital twins proposed by

(Tchana de Tchana et al., 2019), where three evolution phases are identified to reach a

digital twin: (a) Digital Model, (b) Digital Shadow and (c) Digital Twin.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 19 of 104

Figure 2 - Digital Twin Evolution (Tchana de Tchana et al., 2019)

The Digital Model phase is supported by the design components of the ecosystem where

the domain knowledge is collected using appropriate model types. In the Digital Shadow

there is a connection with the real world and the renovation process is simulated,

executed, and monitored. Finally, in the Digital Twin, the automatic adaptation of the

renovation processes is supported with data mining and reflection components. In the

following subsections, each components category is introduced.

1.2.1 Design Tool for Renovation Processes

The design tool is based on ADOxx.org which can be configured using a modelling library

configuration – in the so-called ABL file format – that uses the pre-defined functional

capability of the modelling repository, the access and model management, the graphical

drawing, the analysis, some simulation algorithms as well as the transformation algorithm

that enables the conversion of the models into other formats. This transformation engine

is important as it enables the graph-rewriting of a model and hence the transformation

into another syntax to allow interaction with other tools.

The three boxes of the design component (a) Renovation process, (b) KPI Model and (c)

Data Model correspond to different configuration files – ABL files – that configure the

modelling environment accordingly, to enable process modelling, KPI modelling or data

modelling depending on which configuration file is in use.

1.2.2 Monitoring and Evaluation Tool for Renovation Processes

This tool set is provided in the form of microservices that interpret the KPI and Data

Models and collect data from BIMERR Interoperability Framework – BIF from WP4. Thanks

to the semantic alignment between the metamodel and the BIMERR ontology described

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 20 of 104

in section 5.2, the data that are received from the BIF can be related to the concepts on

the models. This knowledge-based enrichment enables the use of semantic information

and domain specific concepts when reading the BIF data.

This alignment with BIMERR concepts enables to connect the renovation process models

with (a) a process execution that reports each stage of the process, (b) a forward-looking

simulation that assesses how the process is likely to be in the near future and (c) a formal

verification tool that checks the structural correctness of the process. The forward-looking

simulation is novel and the mechanisms in use are based on discrete event simulation

that simulates each BPMN token and can read the properties for each process element

per token. Such detailed configuration possibilities for the simulations enable a so-called

knowledge-based simulation, where knowledge is currently extracted in form of an Excel

sheet that configures the simulation. Additionally, the formal verification is using state-of-

the-art techniques to transform the process in a formal model first and then apply

mathematical models to verify logical properties in order to identify structural problems

in the renovation process models.

The semantic alignment between the concept models in our design component and the

BIMERR ontology allows also to connect with the BIMERR Adaptive Workflow Management

and Automation tool, responsible for the execution of the renovation process, in order to

provide the workflow to execute and monitor the execution status in a dashboard with

renovation specifics KPIs calculated using also data extracted from BIF.

1.2.3 Innovation and Reflection Tools for Renovation Processes

The final phase of the renovation process management is related to learning and

reflection. We consider reinforcement learning by using process mining to check if the

process execution runs as planned. When decisions are being made, the status of the

process as well as the status of the simulations are stored, hence the reinforcement

learning cycle can consider the lessons learned generated from the process log files and

introduce them in the form of updated models and simulation setting for the next

renovation project.

As the renovation process is a highly manual task in its execution, we also propose the

complementary use of a collaboration platform in form of Wiki. The open-source project

xWiki was used to demonstrate the alignment of wiki pages with the models. Models are

used to generate wiki pages, which can be used to document a certain process stage,

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 21 of 104

elaborate decisions or co-creatively improve the model. The wiki pages are seen as

complementary input from users to better document a process status, contribute to a

decision or reflect on the decision retrospectively.

1.2.4 Development Methodology

The prototypes have been developed using a rapid prototyping approach that is

combined with a design-thinking approach in two iterations. Firstly, the design-thinking is

a top-down approach where ideas on the functional capabilities of the Process &

Workflow Modelling & Automation (PWMA) are assumed and then developed as a proof

of concept. The idea has been elaborated with the end users and all other stakeholders

in BIMERR deliverable D6.1 and the functional capabilities has been elaborated with the

end users in BIMERR deliverable D6.3. Secondly, the actual software development is

performed following a rapid prototyping approach, where one prototype is developed

after the other, and each prototype has a typical size of 5-10 person days of

implementation. This leads to a series of rapid prototypes which result into one

consolidated prototype when the functional capabilities that have been originally

foreseen are available. Each intermediate rapid prototype has been presented to the end

users and the stakeholders to allow agile changes. The final prototype with its full

functional capabilities is approached in two iterations, the first from month 10-18 and the

second from month 19-30. The first iteration focused on the initial set of functional

capabilities to present a proof-of-concept of the PWMA, whereas the second iteration

focused on the integration of other BIMERR and 3rd party services and the adaptation of

the prototype while being used by the end users. Overall, we followed the combination of

iterative design-thinking approaches and proof-of-concept development in combination

with rapid prototypes to achieve the proof-of-concept as appropriate for the PWMA

development.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 22 of 104

1.3 UPDATES TO THE FIRST VERSION OF PWMA

This document extends the D6.4 “Renovation Process Simulation Tool 1” with the last

improvements in the modelling related components of the Process & Workflow Modelling

& Automation (PWMA) toolkit as in the following:

• The formal verification feature that enriches the simulation of the renovation

processes has been introduced.

• The KPI model has been extended to introduce reliability indicators used to specify

how reliable the value of a specific KPI can be based on specific factors.

• A model service marketplace has been introduced as an initial approach to simplify

the fruition of the model related services.

• The dashboard of the monitoring and evaluation tools for renovation processes

has been updated to align with the reliability indicators and improved mapping

between the Business Process Model Notation (BPMN) and petri-net that have

been described and used in the simulation component.

• The model wiki component of the innovation tools for renovation processes has

been updated with a new and simplified user interface and the Celonis data mining

tool has been validated with additional data.

• PWMA has been integrated with other BIMERR tools. The integration comprises

the last changes in the ontology, in BIF, in the workflow engine connections and

the new microservice definition model for the Olive framework.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 23 of 104

2. DESIGN TOOLS FOR RENOVATION PROCESS

The Renovation Process design tool is the starting point for all the tools described in this

deliverable. It is based on the ADOxx3 meta-modelling platform that is used to create the

renovation process and workflow design tools as well as the KPIs design tool.

In the following sections, initially the demonstrations of the design environment for the

renovation process and the renovation workflow and then the design environment for

the Renovation KPIs and Goals are reported.

2.1 RENOVATION PROCESS AND WORKFLOW DESIGN TOOL

The business process design tool is an application built with ADOxx. ADOxx is a meta-

modelling platform that allows to define your own meta-model and automatically

generates the modelling environment for you accordingly. The meta-model in the

business process design tool is based on the BPMN2.04 standard schema. This allows to

have a modelling environment that is compliant with the BPMN2.0 standard, allowing to

abstract the renovation process at many levels. In the D6.3 (BIMERR Consortium,2020) the

concept of Template models has been introduced and all the created models have been

described in detail. The template model is a renovation process abstract enough to be

valid for all the renovation use cases, including all the practices to be considered. This

template process has been designed using the BPMN2.0 meta-model. At a more detailed

level, the Renovation process instance represents the instantiated templated model

relative to a specific use case. Decisions specific to the use case have been taken

depending for example on the type of the facade to renovate or on the ventilation system

in use, so the model has been kept as BPMN. At a lower abstraction level, the renovation

process workflows have been modelled with enough details to be executable by the

BIMERR workflow engine. Appropriate constraints have been applied to create a model

compliant with the BIMERR workflow engine, such as the necessity of converging

3 www.adoxx.org

4 https://www.bpmn.org/

file:///D:/BIMERR/D6.4/www.adoxx.org
https://www.bpmn.org/

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 24 of 104

gateways after every choice. Again, in this case, the BPMN2.0 meta-model has been used

in order to be compliant not only with the BIMERR Workflow Engine but also with the

majority of workflow execution engines on the market.

The Renovation Process Design tool has been provided in two forms, (1) a community

version library for ADOxx and (2) a project specific cloud version of ADOxx modeler.

The community version library allows to create an ADOxx modelling environment as a

windows desktop application that everyone can freely setup and redistribute. The

renovation process design tool in this case is based on ADOxx v1.5 and allows to model

the renovation process template, instance and workflow using the BPMN2.0 standard.

Additional features are in this case provided by the ADOxx Community in terms of add-

ons that the user can install from the ADOxx community portal www.adoxx.org.

Figure 3 - Renovation Process Design Tool Community Version

The cloud version of the Renovation Process Design tool is a BIMERR customized version

of the cloud based ADOxx and is available under the endpoint https://bimerr.boc-

group.eu/ADONISNP10_0/auth.view (Figure 4). The integration with the BIMERR Identity

provider Keycloak is currently ongoing so a separate login interface is currently available.

Credentials can be freely requested on faq@adoxx.org and as soon as the integration with

http://www.adoxx.org/
https://bimerr.boc-group.eu/ADONISNP10_0/auth.view
https://bimerr.boc-group.eu/ADONISNP10_0/auth.view
mailto:faq@adoxx.org

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 25 of 104

the BIMERR Identity provider is completed the modelling environment could be accessed

with the same credentials of the other BIMERR tools.

Figure 4 - Renovation Process Cloud Modelling Environment

The cloud version of the Renovation Process Design tool (Figure 5) is a full business

process management suite with possibilities not only to create models but also to manage

their release cycle and check their correctness. In this demonstration we will focus on the

design features of the renovation process templates, instances and workflow models in

the BPMN2.0 standard model-type.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 26 of 104

Figure 5 - Renovation Process Cloud Modelling Environment Main Interface

In the “Design & Document” section of the modelling environment is possible to explore

all the existing models in a folder tree view, visualise them and create new ones using the

BPMN2.0 modelling canvas (Figure 6). Here the interface allows to click and create all

objects supported by the BPMN2.0 standard, with some facilitating features like next

objects and connectors suggestions or automatic alignments.

The tool provides export features in the BPMN2.0 standard format as well as generation

of images and reports with details of the model objects. This and other features are also

available in a REST interface to enable integration with other components of the BIMERR

platform and with the Adaptive Workflow Management and Automation tool.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 27 of 104

Figure 6 - Renovation Process Cloud Modelling Environment Design Interface

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 28 of 104

2.2 RENOVATION PROCESS KPI DESIGN TOOL

The Renovation process KPI design tool is an application built with ADOxx. Similar to the

renovation process design tool, a community version of the platform is available for the

renovation process KPI design tool.

In the renovation process KPI design tool the meta-model is based on concepts of the

balanced scorecard (Kaplan, Robert S., and Norton, 1992), extended with a data model-

type that allow to specify how the KPIs are retrieved and calculated. In the D6.3 (BIMERR

Consortium,2020) the concept of KPIs for the scaffold cost of the renovation facade

scenario has been introduced. The first defined meta-model is the “Cause and Effect”

model-type. It allows to define KPIs and Goals with their relations and group them in

specific perspectives. In particular:

• Perspectives: group similar KPIs, like grouping all “Costs” indicators or all “Time”.

• Goals and sub-goals: describe the objective to be achieved.

• KPIs: describe measurable data sets that assess in combination with the indicator

context – plan value, real value, thresholds, type of thresholds and meta data

about the indicator –, if the corresponding goal can be achieved or not.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 29 of 104

Figure 7 - KPI model

Every object in the model has a common set of attributes like a name and a description

of the object, plus a set of specific attributes that characterize it.

In the case of Goals and Sub-Goals, the

specific attributes (Figure 8) refer to

the type of the goal that can be

Strategic or Operational and on the

aggregation type of the data that

represent how often this goal is

evaluated. Referring to the details of

the evaluation of the Goal, it is possible

to specify the procedure used during

its evaluation. The goal, therefore, can

succeed if all its dependencies succeed

or at least one succeeds.

Figure 8 - Goals attributes

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 30 of 104

Additionally, if none of these reflect

the goal behaviour, it is possible to

provide the actual algorithm in

JavaScript format needed to evaluate

the Goal. In this context the

connection flows between the goal

and its relevant KPIs and sub-goals

that determine the goal dependencies

that are relevant.

In the case of KPI objects, the specific

attributes are relevant to the fields of

data available in the KPI and

information on the target and alert

ranges of the KPI value (Figure 9).

The Fields represent what kind of

metrics are available in these KPIs.

Usually there is a value field (cost in

this case) that contains the value of

the KPI and an instant time field that

contains at what time the KPI value

has been calculated, but this is not

always applicable, so the user can

provide as many fields as he needs.

Every field can also have a specific

measurement unit.

Figure 9 - KPI Attributes

Also in this case, it is possible to specify the aggregation type of the data representing

how often the KPI is calculated. KPIs, to be meaningful, must be associated with

thresholding that is represented as target and alert ranges. The target range must contain

a formula (as a JavaScript expression) that uses the field name defined above, and that

specifies the value range that is the target of our KPI (e.g., Cost < 20000). Using the same

approach, it is possible to define one or many alert ranges that allow to specify when the

KPI is approaching a risky value on the border of the target range. Multiple alert ranges

are possible here, for example, if the cost exceeds 15.000 then it should produce a

yellow/moderate alert and if the cost becomes greater that 19.000 it should produce a

red/important alert, because the value is approaching the top border of the target range.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 31 of 104

Ranges allow to represent information on the threshold of a value (e.g., 20000) combined

with information of expected directions of the values (so if the threshold is an upper or

lower bound), allowing to represent cases of discrete values as well.

Each KPI has also some associated attributes related to its reliability. This set of attributes

is related to:

• The type of the data used by this KPI.

• The experience of the responsible that provide the KPI data.

• The delay of the KPI data.

• The presence of penalties applied by Service Level Agreement (SLA) to this KPI.

The data associated can be of three

types: Measured, Calculated and

Known. If the data is measured, it

means that it is provided by BIF or

measuring device. In this case the data

has the major level of reliability.

Calculated data is instead provided by

an algorithm while known data is

based on the expertise of the provider.

In all the three cases the experience of

the responsible for the specific data

has a key impact on the reliability.

Every KPI have associated for this

reason an attribute allowing to specify

the actual responsible for the specific

data and the required role that this

responsible must cover.

Figure 10 - Trustability Attributes

In case the data of the KPI is not provided in real-time, the delay attribute can be used

indicating the time units of delay. At the end if there is an SLA associated to this KPI, it can

be referenced and enriched with the presence of a penalty. All these attributes contribute

to the calculation of an overall trustability indicator.

At the end, it is important to associate the KPI to a metric to be correctly calculated. The

metric is defined in the data calculation model that specifies how the metric value must

be retrieved or calculated.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 32 of 104

Figure 11 - Data Calculation Model

The data calculation model is composed of Metrics and Data Items including

dependencies between them. Metrics (represented as green circles) represent data in a

specific format and contain information on how the value of these data must be

calculated using as inputs sub-metrics and data access indicators. The Data Items

(represented as blue circles) on the other side can describe how a data value is retrieved

from an external system, as for example a remote service like the BIF, a middleware, a

database or even an Excel sheet. In this context, the data access indicator is strongly

dependent on the Olive microservice framework that is responsible to provide the

features to access external systems.

Additionally, in the data calculation model, every object has a common set of attributes

like a name and a description of the object, plus a set of specific attributes that

characterize it.

For the Metric objects, such attributes refer to the way the metric is calculated based on

its dependencies. The Input Object Aliases attributes refer to this and allow to specify for

every dependency an alias name to use in the calculation formula. Alias can be any name

but must not contain spaces or start with a number.

The Fields represent what kind of data are available in this metric and as described in the

KPI attributes it usually contains two field, one about the data value of the metric and one

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 33 of 104

about the instant time of the data. Every field can optionally have a specific measurement

unit (Euro in the case of the cost field) but must specify the formula used to calculate the

specific field of the metric. The function can be described as a JavaScript expression and

the defined aliases can be accessed and used in the formula. Fields of dependent objects

can be accessed using the dot operator. For example, if we defined an alias for a sub-

metric and the sub-metric includes a field “cost”, this can be reached in the formula by

writing the alias name followed by a dot followed by the field name (e.g., “a.cost”). Every

field defined must contain a calculation formula. If there is no need for a formula, like in

the case of the instant time field, this can be taken directly from the dependency (e.g.,

specifying “b.instant”). Considering as a sample the metric “Current Scaffold Cost”, that

should be calculated multiplying the scaffold cost per day with the current execution time,

we can define this behaviour by creating first the aliases for the sub-metrics “Concrete

Scaffold Costs per Day” and “Current execution time in days”, named respectively “a” and

“b”. Then the “cost” field of the current scaffold can be calculated using the function “a.cost

* b.executionTime”, where “a.cost” refers to the “cost” field of the “Concrete Scaffold Cost

per Day” sub-metric, while “b.executionTime” refers to the “executionTime” field of the

“Current execution time in days” sub-metric. About the “instant” field we used the formula

“b.instant” meaning that we use here the same value of the “instant” field of the sub-

metric “Current Execution time in days”.

In case of exotic metrics functions, it is possible to provide your own algorithm in

JavaScript format that will calculate the metric fields using the “Custom JS Algorithm”

attribute.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 34 of 104

Figure 12 - Metric Attributes

The Data Items can represent how the data values are collected from external systems

through the microservice framework Olive5 . For this purpose, the microservice must

return the data in a specific format to be recognized. The data must be a JSON object that

contains a “columns” array with the list of returned field names (that must match the one

defined in the fields attributes) and a “data” array of JSON objects each one containing a

key for every field defined in the “columns” with the appropriate value in string format.

An example of a valid JSON that the Olive microservice must return is the following:

{

 "columns" : ["cost", "instant"],

 "data" : [{

 "cost": "2000",

 "instant": '2020-01-30T11:40:22'

 },{

 "cost" : "1900",

 "instant": "2020-01-29T10:40:50"

 },{

5 https://www.adoxx.org/live/olive

https://www.adoxx.org/live/olive

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 35 of 104

 "cost" : "1800",

 "instant": "2020-01-28T09:40:15"

 }]

}

Also in this case, it is important to define the data fields that the service returns with

optional information on the measure unit for the specific value in the field.

As soon as the microservice in Olive is ready, it is important to refer to it, using its unique

id and providing the operation name and its required inputs in terms of input id with the

appropriate value. This will be the same input that the microservice expects as a JSON

format but explicitly defined key by key.

In the case of the Data Items that contain the results of the optimistic simulation

(“Optimistic Simulation process execution time ms”) the microservice operation used is

the “getSimulationResults” providing as input the parameter “simulationType” with value

“o” that in the context of the service means “give me the result of the optimistic

simulation”. The returned JSON contain the fields “executionTime” as milliseconds value

and the “instant” time of the simulation.

Figure 13 - Data Items Attributes

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 36 of 104

The community version library allows to create an ADOxx modelling environment as a

windows desktop application that everyone can freely setup and redistribute. The

renovation process KPI design tool in this case is based on ADOxx v1.5 and allows to

model the renovation process KPIs using the previously described meta-model in terms

of KPIs and Data access models. Additional features are in this case provided by the

ADOxx Community in terms of add-ons that the user can install from the ADOxx

community portal www.adoxx.org.

Figure 14 - Renovation Process KPIs Design Tool Community Version

http://www.adoxx.org/

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 37 of 104

2.3 MODELS SERVICES MARKETPLACE

To simplify the usage of the models and their specific features to the final user, we

introduced a sort of marketplace for renovation processes, where the users can see all

the defined renovation processes avoiding the complexity of the modelling environment

and, for each model, use the available PWMA features.

Figure 15 - Renovation Process Marketplace

The marketplace retrieves all the renovation processes directly from the modelling

environment and based on the available dataset, it allows to (a) simulate, (b) visualise the

KPIs and (c) execute the workflow of a specific instance of the renovation process.

As soon as a renovation process is selected, the list of all the available features is

presented. The user must select, for each feature, the dataset he/she wants to use for the

specific instance of the renovation process. In the case of the Simulation feature, the

simulation engine will be pre-loaded with the selected dataset, and it can be executed

clicking the “Run Simulation” button. The process monitor feature instead, after clicking

the “Show Dashboard” button will open the visualisation of a configured dashboard for

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 38 of 104

the specified running process, while the workflow execution will upload the workflow of

the selected instance to the “i3d” engine for execution.

Figure 16 - Renovation Process Marketplace Architecture

The access to all the features is mediated by services created using the Olive Microservice

Framework explained in chapter 5.4 while the User Interface (UI) is composed of reusable

micro-frontend modules.

To configure valid data for a specific feature over a renovation process, a specific feature-

based marketplace model type is required. This model type contains the semantic

associations between a feature and a dataset, also providing methods to certify the

dataset’s correctness through a digital signature approach. Digitally signing a model

allows to check that the model has not been changed by someone who does not have

competence on the selected domain and guarantees that the provided dataset is valid for

the specific feature. The marketplace model is not intended to be demonstrated in the

context of BIMERR project but will be finalized in future projects.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 39 of 104

3. MONITORING AND EVALUATION TOOLS FOR RENOVATION PROCESSES

The monitoring and evaluation tools for the renovation process are used to support the

user in the evaluation of the status of the process and on the future behaviour.

In the following sections the demonstration of the monitoring cockpits first and

renovation process simulation and verification later, are reported.

3.1 RENOVATION PROCESSES-ORIENTED KPI DASHBOARDS

The KPI dashboard visualises in a combined view both the backward-looking monitoring

and the forward-looking simulation results. The dashboard interface is based on

configurable widgets where the KPIs can be visualised in different formats according to

the widget features. The KPIs definitions are taken directly from the renovation process

KPIs design tool that can export them in a format recognized by the dashboard. The

dashboard uses the KPIs information reported in the model to automatically evaluate

them, calculating the relative metrics and retrieving the data from the data sources (BIF

and simulations results) using the appropriate Olive microservice.

Figure 17 - Renovation KPI Cockpit Use Case

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 40 of 104

3.1.1 Models-based Monitoring Dashboards Demonstration

The KPI dashboard is strongly based on the underlying KPI data model. A detailed

description of the models created for the BIMERR demonstration is available in the

BIMERR deliverable D6.3. A sample model focused on the scaffold costs, contains the

definition of the following KPIs including their relative metrics and data sources:

• Measured Scaffold Effective Costs: a backward looking KPI that monitors the

scaffold current costs on a scheduled basis.

• Simulated Scaffold Optimistic Costs: a forward looking KPI that shows the

results of the last simulation performed with optimistic risks evaluation on the

scaffold estimated costs.

• Simulated Scaffold Moderate Costs: a forward looking KPI that shows the results

of the last simulation performed with moderate risks evaluation on the scaffold

estimated costs.

• Simulated Scaffold Pessimistic Costs: a forward looking KPI that shows the

results of the last simulation performed with pessimistic risks evaluation on the

scaffold estimated costs.

Three dashboards are currently available that support a product view of the KPIs and two

type of process dependent view.

The first dashboard uses four widgets to visualise the KPIs: one image map widget and

three chart widgets. The image map visualises the building facade to renovate using an

image from the construction site and an overlay with the values of the previously

described KPIs using a color code that immediately reflects the KPI status (green for KPIs

with value in the target range, yellow for KPIs with value in the alert range and red for KPIs

with value outside the target range). The three chart widgets are used to display the

historical trend of the three simulation results, by visualising in a Cartesian chart the

estimated scaffold cost for every performed simulation over time, allowing to analyze the

alignments of the simulation inputs with real past data.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 41 of 104

Figure 18 - Backward-looking Monitoring and Forward-Looking Simulation of KPI-Scaffold Costs

The second dashboard demonstrates the Process-Oriented Context of the dashboard

with the capability to link KPIs to different phases of the process. Each time-slot of a

process can be linked to the actual as well as to the simulated KPIs.

The process-oriented representation also allows to drill the KPI down either in the

process-oriented view, or using the model-tree, which represents the KPIs as they are

modelled in the KPI model. This helps to understand the cause of a failing KPI checking

how its dependencies behave, thus finding the root of the problem.

Hence the process-oriented representation is on the one hand an alternative visualisation

of the dashboard and secondly allows the introduction of the linkage of process phases

to a concrete KPI.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 42 of 104

Figure 19 - Simulation Output for KPIs

The intention is that a dashboard can be created where KPIs are linked to different phases

of the process that can be simulated and hence dependencies between phases can be

considered on an aggregated view. In case a complex process is described by several

construction sites running in parallel, and each process of the individual construction sites

uses simulated KPIs, the aggregated complex process emerges from the simulated using

the underlying processes dependencies.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 43 of 104

Figure 20 - Facade Renovation Status KPI Dashboard

A second process view has been also introduced to focus on the status of the process as

returned by the execution engine. This is different from the first process view because it

allows to visually check whether the activities are aligned with their scheduled times or

not.

Such complex scenarios require complex modelling and knowledge externalization in the

design phase, and hence may only be appropriate for the specific dashboard. A simple

simulation of one renovation process for the simulation of one KPI will be introduced in

the next section.

3.1.2 Models-based Monitoring Dashboards Architecture

The KPI dashboard is a component that performs a union between models and data,

resulting in a customizable web dashboard. The models contain information about how

to retrieve and combine data to create metrics, and how to use such metrics to evaluate

KPIs and goals. The data are external and obtained through specific microservices,

created with the Olive framework, able to connect with different types of data sources. In

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 44 of 104

the end, the results are displayed using a widget-based interface that is able to display

the KPIs and metrics in different formats depending on the domain and the user

experience.

Figure 21 - KPIs Dashboard architecture

The dashboard accepts KPIs models provided in a specific JSON format. The Renovation

process KPIs design tool provides a feature to export the KPIs and data model in a specific

JSON format. This model is processed by the model interpreter component that has the

responsibility to create an internal representation of the model collecting all the

dependencies, the calculation methods, and the data sources for all the KPIs, goals and

metrics in the model.

Such model information is processed by the KPI core component that is responsible to

call the microservices described in the model to retrieve the data, apply the calculation

functions as described in the model and make the resulting values available through the

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 45 of 104

user interface. The interaction of the KPI core with the different microservices is helped

by a Data Access Object (DAO) component that provide also caching features and an

optimized microservice communication. The functions are evaluated in a component that

interprets and validates them to avoid security issues.

When the evaluated KPIs and Goals are available, they are provided to the UI component

upon widget request. The widget manager component is responsible to manage the

interface for the creation and configuration of the different widgets giving them also

access to the calculated data.

The dashboard provides out of the box the four most used widgets, but extensions are

available through a plug-in based mechanism:

• Chart widget: can visualise a KPI value in a Cartesian chart. The user can configure

the type of chart to use, choosing between horizontal bar chart, vertical bar chart,

line chart, curve chart and radar chart and after that he can specify which KPI field

is visible for every axis and an optional threshold line. For example the “Simulated

Scaffold Optimistic Cost” KPI containing the data fields “cost” and “instant” can be

visualised in a line chart selecting for the X axis the “instant” field and for the Y axis

the “cost” field.

Figure 22 - KPI Dashboard Chart Widget

• Table widget: this widget allows to visualise all the details of a configured KPI in a

table format. All the values will be visualised, along with evaluation of the KPI status

with a green, yellow, red indicator.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 46 of 104

Figure 23 - KPI Dashboard Table Widget

• Image widget: This widget allows to overlay one or more KPI details over an

image. The KPIs are displayed with a color code that reflects the KPI status and

details are visualised when hovering with the mouse over the indicator.

Figure 24 - KPI Dashboard Image Widget

• Tree widget: This widget allows to visualise all KPIs in a collapsible tree view

organised hierarchically or linearly on their dependencies. In this way it is possible

to identify the root cause of a problematic KPI or goal simplifying the behaviour

analysis.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 47 of 104

Figure 25 - KPI Dashboard Tree Widget

At the end, the UI component is responsible for the rendering of the configured widgets

in a docked layout that the user can resize and move the widgets around the page with a

drag and drop mechanism.

Figure 26 - KPI Dashboard Widgets Combined.

All the widgets allow also to visualise in a similar way all the trustability related indicators.

The overall trustability score is represented as a percentage bar of green, yellow, and red

color in the cases of high, medium and low the trustability score respectively. Clicking over

this score a popup will appear to visualise further details.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 48 of 104

Figure 27 - KPI Trustability Details.

It is possible to distinguish the three main indicators affecting the trustability score: (1)

the type of the KPI input data, that also contains information about the user expertise, (2)

the input data recency showing also the details of the data delay and (3) the SLA Penalty

presence with details on the referenced SLA.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 49 of 104

3.2 SIMULATION TOOLS FOR RENOVATION PROCESSES

This section demonstrates the knowledge-based simulation for the renovation process

first and then provides a view on the architecture of the tool.

3.2.1 Simulation Tool Demonstration Use Case

The simulation tool requires as input, first, the renovation process workflow in standard

BPMN format. The process to be simulated can be exported in BPMN format directly from

the renovation process and workflow design tool. Additionally, an Excel sheet containing

times, costs and decision probabilities is required.

Figure 28 - Renovation Process Simulation Inputs

The Excel input file must be created according to the details described in BIMERR

deliverable D6.3.

In particular, the Excel must contain the following 3 sheets in the proposed order:

1. C_START_EVENT

2. C_TASK

3. C_EXCLUSIVE_GATEWAY

The C_START_EVENT sheet provides information on the number of simulations to run with

their starting time and unique identifier. The first column of this sheet must contain the

name of the starting event as reported in the BPMN model. The second column must

contain the starting time of this specific event while the third column includes a unique id

to associate it to the simulation run and to serve later as a reference in the simulation

results.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 50 of 104

Figure 29 - Renovation Process Simulation Input C_START_EVENT

The C_TASK sheet contains the execution time of every activity in our renovation process.

The first column must contain the activity name as reported in the BPMN model. The

second column contains an optional starting time that can be used to provide an

additional waiting time before the activity starts. By default, the activity starts as soon as

the previous one is terminated. The third column represents the execution time

expressed in milliseconds. This value can be provided directly but the great advantage of

using Excel as input source is that you can calculate this value combining different factors

together. Additional sheets are used for this scope. The fourth column can contain the

unique id of the simulation run to be used or the defaults value if the activity is valid for

every simulation run.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 51 of 104

Figure 30- Renovation Process Simulation Input C_TASK

In case of choices the C_EXCLUSIVE_GATEWAY sheet must be filled. This allows to specify

for every choice in the BPMN process, the probability to use during the simulation. The

first column in this case must contain the exclusive gateway name as reported in the

BPMN process; the second column contains an optional waiting time to postpone the

choice execution and the third column provide information about the probability value of

all its outgoing sequence flows.

As introduced previously, additional sheets can be present to define the execution time

for every task, combining different indicators and risk factors. Different approaches can

be used to combine the risk factors as described in D6.3 (BIMERR Consortium,2020). An

example is the weighted combination of the normal distribution of five different factors:

(1) the normally estimated average task time, (2) the probability of the delay due to

payment problems, (3) the delay introduced by bad weather forecast, (4) the delay

introduced by sub-contractor’s problems, and (5) the delay introduced by unexpected

events.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 52 of 104

Figure 31 - Renovation Process Simulation Input Calculation

As soon as both inputs are ready the simulation can start. Once completed, the results

are visualised in two different forms: an overview of times and cost with path probabilities

and generic information of the process, and a detailed view in the form of an execution

log that can be used also to perform a comparison with real workflow execution.

Figure 32 - Renovation Process Simulation General Results

The general results contain the following data:

Name Measure Details

Average Cost Average cost during all

the simulation runs

-

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 53 of 104

Name Measure Details

Max Cost Max cost during all of

the simulation runs

Trace name that contains this

cost

Min Cost Min cost during all of

the simulation runs

Trace name that contains this

cost

Total Costs Sum of all costs during

all the simulation runs

-

Average Executions Time total execution time /

total simulation runs

number

-

Max Executions Time Max execution time

during all of the

simulation runs

Trace name that contains it

Min Executions Time Min execution time

during all of the

simulation runs

Trace name that contains it

Total Executions Time Sum of all execution

times during all of the

simulation runs

-

Total Runs Number of simulations

runs

-

Total Traces Number of Petri Net

traces passed through

each simulation run

-

Total Paths Number of Petri Net

places passed through

each simulation run

-

Table 1 - Renovation Process Simulation General Results Details

The detailed results are in form of Excel sheet following the same structure with the input

data, but also including details on the simulated starting and execution times.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 54 of 104

The C_TASK sheet contains in the first column the id of the run involved, in the second

column the name of the task performed and in the third column the simulated starting

time with the actual execution time in the fourth column.

Additionally, a C_END_EVENT sheet is present that contains the ending time for every

started simulation.

Figure 33 - Renovation Process Simulation Detailed Results

3.2.2 Simulation tool architecture

The BIMERR Renovation Process Simulation provides a fast and extendible service able to

simulate renovation process executions. The service uses the Petri Net logics to simulate

processes and workflow provided in BPMN2.0 formats and is flexible enough to support

the simulation of other kind of models through the definition of their appropriate

mapping rules to Petri Net. The service is provided as REST API with a graphical HTML

client that shows the results in a user-friendly way.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 55 of 104

Figure 34 - Renovation Process Simulation Engine Architecture

Following are the descriptions of the main components of the simulation tool:

The petri net core module is the component that contains the main logic of a petri net

and manages its semantics. The simulation service uses this component to evaluate at

each step which transition can be enabled.

The import module is an easy to extend component that automatically recognizes the

format of the provided model and converts it into the internal petri net structure. It

manages separately the logic of document’s parsing and object’s mapping to reuse the

same mapping logic for multiple file formats (like in the case of BPMN and ADOxx BPMN).

This is also responsible to associate the input from the Excel sheet to the right BPMN

object. More details on the work done in BIMERR in the context of mapping the BPMN

into a petri-net is available in the Annex section BPMN Mapping to Petri Net.

The export module is for diagnostic purposes only. It gives the possibility to export the

internal petri net structure in Petri Net Modeling Language (PNML) standard format, to be

visualised in any supported editor.

The simulation measures module is an easy to extend component that allows the

definition of listeners for the simulation event. Each listener produces a measure or a

result from a single simulation, like a trace, a path, the waiting times, or the execution

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 56 of 104

costs. The resulting indexes can then be collected in a special container to calculate some

final indexes (like average values).

The discrete event selector module is the component that performs the selection of the

transition to be executed among the available ones. The module provides a base

mechanism that performs a fair choice between parallel transitions and a user defined

probabilistic choice between concurrent transitions. The base mechanism has been also

extended to support dynamic probability evaluation using a scripting system.

The simulation module is the component that manages all the simulations, invoking the

functionalities of the simulation measures module and the transition choice. It is also

responsible for the generation of the simulation output in a structured format.

The REST API is the module responsible to expose the simulation component features to

the external world. It is responsible for processing the simulation parameters input and

generating the simulation results in the service specific output format.

The Web Client is a simple web interface that allows the user to simulate a BPMN model

and visualise the simulation results in terms of charts and tables, communicating directly

with the REST API.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 57 of 104

3.3 FORMAL VERIFICATION TOOLS FOR RENOVATION PROCESSES

This section demonstrates the formal verification of the renovation process first and then

provides a view on the architecture of the tool.

3.3.1 Formal Verification Tool Demonstration Use Case

The simulation tool requires as input first the renovation process workflow in standard

BPMN format. The process to be formally verified can be exported in BPMN format

directly from the renovation process and workflow design tool. As soon as the model is

selected, it will be automatically loaded and then the user will be able to select the desired

verification capability and activate it by clicking on the Start button.

Figure 35 - Formal Verification Input

The application allows to perform four kinds of formal verification: Deadlock analysis,

Unboundedness analysis, Reachability analysis and Path existence detection. The results

are reported as statements reporting the validity of the verified condition and in case of

availability a list of counterexamples that prove the evaluation.

Deadlock analysis

The deadlock analysis allows to check if one or more deadlocks exist in the model, that

prevent the correct termination of the process. If the “Check All Deadlock” option is

selected it will identify all the paths that bring to a deadlock, otherwise only the first one

occurring will be found. Checking all deadlocks at once may result in the model checking

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 58 of 104

state explosion problem6, especially if the analysis is performed on big workflow models,

resulting in the saturation of all the machine memory resources. Finding only one

deadlock at once can help to solve or minimize this problem.

Figure 36 - Deadlock Analysis

The verification results are visualised as a sentence reflecting the semantics of the

Computation Tree Logic (CTL) formula verified. In case of the deadlock analysis, the

“Deadlock absence” property results will be TRUE or FALSE, respectively when the model

is free from deadlock or not. When one or more deadlocks are detected, the analysis will

also report the activities directly involved, along with the ability to see the full process

path resulting in that activity, to help the resolution of the problem.

Unboundedness analysis

The unboundedness analysis allows to check if the process can get into an infinite loop

from where it cannot be recovered. Also in this case, the check allows to verify that the

process ends correctly in every possible situation. Like in the deadlock detection, also this

analysis allows to search for all the unboundedness at once or, in case of big processes,

to identify the unboundedness one by one to minimize the state explosion problem.

6 https://link.springer.com/chapter/10.1007/978-3-642-35746-6_1

https://link.springer.com/chapter/10.1007/978-3-642-35746-6_1

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 59 of 104

Figure 37 - Unboundedness Analysis

The verification results will be TRUE of FALSE in case the CTL formula associated to the

sentence “Unboundedness absence” is valid or not. When one or more livelocks are

detected, the analysis will also report the activities directly involved with the possibility to

see the full process path resulting in that activity, to help the resolution of the problem.

Reachability analysis

The reachability analysis allows to check if a specific activity is reachable or not at some

point in the process. This analysis will not detect structural problems automatically like in

the deadlock and unboundedness cases, but, depending on the specific process, it will

allow to check if critical activities are correctly executed.

This analysis allows to indicate the specific activity to analyse, by selecting it from all the

available processes, and on this activity perform the reachability or not reachability check

(using the “Negate” checkbox) for every possible situation or for at least one (via the “In

any case” checkbox). So, based on the combination of such parameters, the reachability

analysis allows to effectively perform four kinds of checks:

- The activity is always reachable: any path in the process brings to that activity.

- The activity is sometimes reachable: at least one path in the process brings to that

activity.

- The activity is always not reachable: any path in the process does not bring to that

activity.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 60 of 104

- The activity is sometimes not reachable: at least one path in the process does not

bring to that activity.

Figure 38 - Reachability Analysis

The analysis returns TRUE or FALSE in case the specific property is verified or not. In case

a counterexample is available it is visualised as the sequence of activities that prove the

theory. In the example in Figure 38 the “Building Scaffold” activity is checked on whether

it is sometimes reachable. This is true because, as the counterexample says, you can reach

it following the sequence of activities “Install Material Lift or Crane” and “Install Safety

Measures”.

Path existence analysis

This analysis is similar to the reachability because it does not automatically check a

structural problem but allows the user to analyze the behaviour of the process on

specifics critical activities checking whether an execution path exists between the two of

them.

This analysis allows to select the starting and ending activities of the path to analyse,

selecting it from all the available processes, with the possibility to negate both (using the

“Negate” checkbox). The negation allows to search for the existence of paths that do not

start or end with the selected activity. Additionally, it is possible to check the path

existence in every possible scenario (via the “In any case” checkbox) or in at least one.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 61 of 104

So, based on the combination of such parameters, the path analysis allows to effectively

perform eight different kinds of checks:

- Existence of at least one path from the start to the end activities.

- Existence of at least one path that does not start with the first selected activity but

does end with the second selected activity.

- Existence of at least one path that does start with the first selected activity but

does not end with the second selected activity.

- Existence of at least one path that does not start with the first selected activity and

does not end with the second selected activity.

- Every path goes from the start to the end activities.

- Every path does not start with the first selected activity but does end with the

second selected activity.

- Every path starts with the first selected activity but does not end with the second

selected activity.

- Every path does not start with the first selected activity and does not end with the

second selected activity.

Figure 39 - Path Existence Analysis

The analysis returns TRUE or FALSE depending on whether the specific property is verified

or not. In case a counterexample is available it is visualised as the sequence of activities

that prove the theory. In the example in Figure 39, it is checked whether every path that

starts from the “Building Scaffold” activity is reaching the “Disassemble Scaffold” activity

in order to guarantee that the scaffold will be always disassembled after its assembly.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 62 of 104

3.3.2 Verification Tool Architecture

The renovation process verification tool is integrated in the simulation component and

reuses some of its modules, in particular the ones related to the input processor and the

petri net core. This is possible because the formal verification tool relies on the same

model representation logic used in the simulation component, based on petri-net and

obtained through an automatic mapping procedure from the BPMN renovation process.

In this specific case the petri-net model instead of being executed is exported in the LOLA7

specific format for formal model checking specific properties expressed in CTL.

Figure 40 - Formal Verification Architecture

The descriptions of the main modules composing the verification component is provided

in the following paragraphs.

The petri net core module is used to store an internal representation of the model in

petri-net specific semantics. It is responsible to manage the model provided as input and

7 https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/

https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 63 of 104

make them available to the needed modules, in particular to the export and verification

engine modules.

The import module is an easy to extend component that automatically recognizes the

format of the provided model and converts it in the internal petri net structure using state

of the art techniques described in Annex, section BPMN Mapping to Petri Net. It manages

separately the logic of document parsing and of object mapping to reuse the same

mapping logic for multiple file format (like in the case of BPMN and ADOxx BPMN).

The export module contains the logic to translate the internal petri-net model in the

specific file format Extended Backus-Naur form (EBNF) required by the LOLA model

checker. Additionally, it is used for diagnostic purposes providing the capability to export

the petri-net in PNML standard format in order to be visualised in any supported editor.

The verification engine module is responsible to communicate with the LOLA Model

checker and initialise both the petri-net export in the specific format required by LOLA

and the generation of the CTL property to verify the processing of the petri-net model.

Additionally, the module will capture the LOLA output identifying counterexamples and

properties verification results.

The LOLA Model Checker module contains the Windows, Linux and macOS executables of

LOLA, an open source, state-of-the-art and multi award winning8 model checker for petri-

net that allows to verify properties expressed in CTL.

The CTL Property Generator module allows to generate specific Computation Tree Logic

properties in the format required by the LOLA model checker. The generation takes also

into account elements from the petri-net model that may be required by the specific

property (e.g., for the reachability analysis a specific model activity is required). More

details on the work done in BIMERR in the context of mapping the property to verify into

a CTL formula is available in the Annex section Properties to Computation Tree Logic

Mapping.

8 https://mcc.lip6.fr/

https://mcc.lip6.fr/

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 64 of 104

The REST API is the module responsible to expose the verification component features to

the external world. It is responsible for processing the verification parameters inputs and

generating the verification results in the service specific output format.

The Web Client is a simple web interface that allows the user to select a BPMN model and

the property to verify and visualises the verification results in terms of sentences,

communicating directly with the REST API.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 65 of 104

4. REFLECTION AND INNOVATION TOOLS FOR RENOVATION PROCESSES

In this chapter the set of components for workflow log analysis and renovation process

collaboration are described.

4.1 PROCESS MINING OF RENOVATION PROCESS

Process mining is used to support the analysis and evaluation of business processes.

Trends and patterns in the process data are interesting for the improvement of processes.

Therefore, data mining algorithms are applied on the process data. Not only should the

efficiency of processes be improved by process mining, but also the understanding,

especially dependencies and interconnections. It might not only be necessary to improve

specific tasks regarding their execution time, as sometimes a restructuring of the whole

process is more reasonable. For mining the renovation processes, the free process mining

platform Celonis9 was used. In the following subsection, a description of the preparations,

the creation of an analysis workspace and the results are provided based on our outside

facade renovation process sample.

Celonis is a process mining platform that allows to analyze log files and construct custom

analytical dashboards. Its free version Celonis Snap10 can be used after registration to

their portal and the whole platform is available as a cloud application. The process to

provide log files to analyze and obtain back the results is now manual. Currently the log

generated by the workflow engine requires some manual processing in order to be

accepted as valid inputs for Celonis Snap.

9 https://www.celonis.com/

10 https://www.celonis.com/solutions/celonis-snap

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 66 of 104

4.1.1 Logs preparation for Celonis

Celonis requires one single CSV file as input. The results of the workflow must be

combined in one Excel worksheet that, afterwards, must be converted to a CSV file with

field separator “;” so that Celonis can parse the entries. The CSV parser of Celonis must

be configured as follows:

• Input type: CSV

• Field separator: “;”

• Header row: “unchecked”

• Date format: ‘yyyy-MM-dd'T'hh:mm:ss’

In a second step Celonis requires to associate a specific semantic meaning to the CSV

columns to interpret its data. This association must be performed as follows:

• Assign ‘Case ID’ to the first column, which holds the information.

• Assign ‘Activity Name’ to the second column.

• Assign ‘Timestamp’ to the third column.

After this assignment, the data is ready to be analyzed.

Figure 41 - Celonis Logs Preparation

• Assign ‘Activity Name’ to the second column

• Assign ‘Timestamp’ to the third column

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 67 of 104

4.1.2 Creation of Analysis Workspace

First, a new workspace for analysis must be created. This procedure can take place in the

process analytics space where all the defined workspaces are available. Here the user can

create a new workspace starting from the previously uploaded logs. A new analytics

workspace allows by default to visualise the process obtained from the log analysis,

including their variants and statistics. This workspace can be customized using

configurable widgets and custom table analytics done using a proprietary SQL-like

language named Publisher Query Language (PQL) used to combine and analyze tables

resulting from the logs.

For the BIMERR use case in particular a workbench view with the following widgets has

been created:

• Process Explorer widget: allows to visualise the workflow generated from the

logs, including all the variants. It allows to compare it with the original workflow to

identify incorrect actions.

• Cases Variants: A table widget that allows to visualise all the process variants

listing the tasks of each one. This table must be constructed with the following

columns:

o Case ID: Containing the formula

"_CEL_CSV_ACTIVITIES_CASES"."_CASE_KEY"

o Variant: Containing the formula

VARIANT("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN")

• Frequencies: A table widget that allows to visualise the frequency of every choice.

This is useful to identify if the data used for the process simulation were correct or

need alignments. This table must be constructed with the following columns:

o Source Activity: With the formula

SOURCE("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN")

o Target Activity: With the formula

TARGET("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN")

o Frequency: Containing

COUNT(TARGET("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN"))

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 68 of 104

• Execution Times: A table widget that allows to visualise the average execution

time of every task. This table must be constructed with the following columns:

o Activity: Using the formula SOURCE("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN")

o Average Execution Time: Using the formula AVG(DATEDIFF(ms,

SOURCE("_CEL_CSV_ACTIVITIES"."EVENTTIME"),

TARGET("_CEL_CSV_ACTIVITIES"."EVENTTIME")))

Figure 42 - Celonis Analysis Workspace for BIMERR

To enable the exports of the results, the created workspace needs to be configured. In

the Edit mode the user can access the Analysis setting in the menu and turn on the

checkboxes named “Allow excel and csv export of analysis components” and “Allow BPMN

export of the process explorer”. This enables a right click menu entry on every widget that

allows to generate a BPMN file for the process to be imported in the modelling

environment and to be compared with the original workflow, and to generate CSV files

for every one of the tree tables available in our workspace.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 69 of 104

Figure 43 - Excel Output

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 70 of 104

4.2 COLLABORATIVE REFLECTION OF RENOVATION PROCESS

Beginning with people working in collaboration, the so-called collective intelligence can

emerge. Due to interaction and competition, the group has an increased problem-solving

capacity. The change of finding a solution within the group is much higher compared to a

single person tackling the issues of interest. Especially, the principle of agreeing on

reasonable approaches and avoiding critical ideas applies in collective intelligence. The

final goal should be consensus decision making. Network effects between distributed

data, knowledge, software applications, computing capabilities and experts are used to

build up the collective intelligence. Feedback and continuous improvements and

learnings are considered in real time. To structure the way of working and to put the ideas

and comments on record, social media or other contribution systems might be used. For

instance, Wikipedia11 is one platform widely known for collective intelligence, as it allows

easy exchange of knowledge, ideas, and thoughts.

As already mentioned, collective intelligence is beneficial for solving problems and finding

improvements. For this reason, a model wiki based on XWiki12 allows commenting models

and retrieving comments.

4.2.1 Model Wiki Application

The Model Wiki web application allows to generate xWiki pages from any model in the

ADOxx modelling environment and as soon as the pages are generated, it enables the

import of any existing comments in the wiki back to the model.

The user must first have a model available in the ADOxx Modelling environment. As soon

as the user creates or imports a model in ADOxx, the web application can retrieve it and

through the “Model Export” user interface, the user can automatically generate a series

of xWiki pages. An external reviewer can then look at the generated wiki pages and

collaborate on the model, commenting in the relative wiki page. Through the “Import wiki

11 https://en.wikipedia.org/wiki/Main_Page

12 https://www.xwiki.org/xwiki/bin/view/Main/WebHome

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 71 of 104

comments” user interface the modeler can decide to automatically import existing

comments in a specific attribute of the model or of the model objects.

Figure 44 - Model Wiki Use Case Scenario

The web application uses the Olive microservices to communicate with the ADOxx

modelling environment to (1) retrieve the list of all the available models, (2) retrieve all the

attributes and objects of a specific model, (3) retrieve the image of a specific model, (4)

retrieve all the attributes of a specific object and (5) write the comments in a specific

attribute of a model or of an object. Additionally, Olive microservices are used for the

communication with the xWiki platform to (1) create an xWiki page and (2) retrieve the

comments of a specific xWiki page.

The user interface of the web application was developed using the Olive UI Workbench

and is composed of one widget, named “Model-Wiki UI” displayed in the main rendering

page.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 72 of 104

Figure 45 - Model Wiki Architecture

The xWiki REST APIs are used to perform all the required operations in the remote wiki

platform.

The ADOxx Modelling environment is instead accessed programmatically using its SOAP

APIs that need to be enabled using the AdoScript13 command CC "AdoScript" SERVICE

start port:80.

The Model Wiki web application uses the following defined Olive microservices:

• Model image retrieval service: microservice that communicates with the SOAP14

interface of the ADOxx Modelling environment. It requires as input a model

identifier (id) and returns the Base64 encoded image representation of the model.

• Models retrieval service: microservice that communicates with the SOAP

interface of the ADOxx Modelling environment and returns a list of ids and names

of all available models.

• Objects retrieval service: microservice that communicates with the SOAP

interface of the ADOxx Modelling environment. It requires as input a model id and

returns the list of all the objects inside the model.

13 https://www.adoxx.org/live/external-coupling-overview

14 https://en.wikipedia.org/wiki/SOAP

https://www.adoxx.org/live/external-coupling-overview
https://en.wikipedia.org/wiki/SOAP

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 73 of 104

• Attributes retrieval service: microservice that communicates with the SOAP

interface of the ADOxx Modelling environment. It requires as input the id of a

model or of an object and returns the list of all its attributes.

• Attribute write service: microservice that communicate with the SOAP interface

of the ADOxx Modelling environment. Require as input the id of a model or object,

the attribute name to use and the value to write in the attribute. Return a

confirmation code that reflect if the attribute has been written correctly or not.

• Pages creation service: microservice that communicate with the xWiki REST

interface to create a page on xWiki. Require as input a page id, page title and page

content using the xWiki syntax.

• Comments retrieval service: microservice that communicate with the xWiki REST

interface to retrieve comments on a specific xWiki page. Require as input the page

id of the xWiki page to lookup.

• Model-to-Wiki service: microservice that orchestrate all the Olive microservices

required to generate xWiki pages from a model. The service will generate an xWiki

page for the model with information on its graphical representation and its

attributes and a sub-page for every model object containing a description of all the

objects attributes. Require as input the model ID and use the “model image

retrieval”, “object retrieval”, “attribute retrieval” and “page creation” microservices

in the background.

• Wiki-to-Model service: microservice that orchestrate all the Olive microservices

required to import comments of xWiki pages inside the respective model. Require

as input the model ID, a model attribute ID, and the list of model object IDs with a

model object attribute. Use internally the “comment retrieval services” to find all

the comments in the model and use the “attribute write services” to store the

comments on the model.

About the frontend side the Model Wiki web application uses the following widgets

defined using the Olive UI Workbench:

• Model-Wiki UI: This widget uses the “models retrieval service” to first obtain the

list of all the available models in the ADOxx Modelling Environment and visualise

them in a searchable selection box. As soon as a model is selected, with the

“Generate xWiki Pages” button it is possible to generate the relative Wiki pages,

using the underlying “Model-to-Wiki service”, while using the “Import xWiki

Comments” it is possible to call the “Wiki-to-Model service” that is responsible to

perform all the operations of importing the comments for all the xWiki pages back

to the selected model.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 74 of 104

4.2.2 Model Wiki Sample Use Case

This section containts an example of Model Wiki for the Facade Renovation process. This

process is modelled in the ADOxx Modelling environment using the BPMN2.0 Library that

allows to model processes using the BPMN2 standard notation.

As soon as the SOAP service is initiated in the ADOxx Modelling environment, the Model-

to-Wiki UI is able to retrieve the list of all the available models. The user can now select

the Facade Renovation process and click the “Generate Wiki Pages” button.

Figure 46 - Facade Renovation Process to Wiki

The generation of the xWiki pages may take time depending on the size of the model. As

soon as the generation is completed the xWiki will contain a page describing the process

model with its graphical representation and a description of all its attributes. Additionally,

this page will contain a subpage for every task included in the model with its description.

The reviewer is now able to comment on the page relative to the model or on every sub-

page relative to the tasks. In this particular example a comment has been added on the

Building Scaffold task.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 75 of 104

Figure 47 - Wiki Pages Generated for the Facade Renovation Process

When the modeler decides to check the status of the collaboration on the model, he can

import the comments into the original model to be processed later. The modeler selects

the Facade renovation process and by clicking the “Import comments to model” button

the model will be updated, and the comments can be visualised in the attribute

“Comment”. In case of multiple comments all of them will be imported in the same

attributes separated by a newline. Information about the user and the timestamp at the

creation of the comments are reported as well.

Figure 48 - Comments Imported for the Building Scaffold Task of the Facade Renovation Process

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 76 of 104

5. INTEGRATION WITH BIMERR TOOLS

This chapter contains a detailed view on the integration strategies used by the different

components to interact with the BIF and between them.

5.1 INTEGRATION WITH BIF

As described in detail in the BIMERR Deliverables D4.5, D4.7 and D4.9, the BIMERR

Interoperability Framework (BIF) essentially allows any application and tool developed in

BIMERR to exchange building-related data, ranging from building data and occupancy

data to renovation process data, in a meaningful and secure manner. In this context, the

BIMERR Renovation Process Simulation Tool practically acts both as a building-related

data provider and consumer to effectively enable the anticipated data exchanges with

other BIMERR applications.

From the perspective of the BIMERR PWMA tool acting as a data provider, its respective

developers access the integrated BIF platform interface and create as many data

collection jobs as needed to upload the different renovation process data (depending on

whether they intend to apply different access rules for different parts of the data). For

each data collection job, they define the applicable ingestion method (that is typically a

GET method exposed by the BIMERR PWMA tool) and configure all its related parameters

(ranging from the authentication aspects and the query parameters to the ingestion

schedule). Upon defining how the harvesting of the renovation process data will occur,

they need to proceed with mapping and semantically lifting the data that are to be

uploaded in BIF to the respective BIMERR data models (that are created based on the

BIMERR ontologies described in section 5.2). They need to manually confirm whether the

predicted mappings are correct and complement them with additional information

related to the measurement units and the date-time formats, whenever applicable. Then,

they need to define the metadata related to the specific data that are to be uploaded, e.g.,

the applicable building and project information, and the access policies that need to be

applied (e.g., in terms of which applications should have or not have access to the specific

data). Such a multi-step configuration at data collection time ensure that data will be

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 77 of 104

collected once or on a specific schedule from the APIs exposed by the BIMERR PWMA tool

and shall be available for retrieval by other BIMERR applications. The data exposed, in

particular, refer to the KPIs values simulated and calculated by the dashboard component

of the BIMERR PWMA tool. As soon as the data are calculated it is exported as JSON and

pushed to the configured BIF endpoint using a specific microservices created with the

Olive framework.

From the perspective of the BIMERR PWMA tool acting as a data consumer, its respective

developers access the integrated BIF platform interface and initiate a new query to

identify the data they would like to access from other BIMERR applications with the help

of the BIF. To this direction, they define the exact properties of the data they want to

acquire and whether any of them should act as a query parameter according to their

preferences (e.g., to retrieve very specific data for a specific id or all data for all ids in a

single or multiple datasets). Once a query is created, the related datasets that include the

requested information are identified and their access policies are enforced to check

whether the BIMERR PWMA tool is authorized to access them. They are informed which

are exactly the data that the BIMERR PWMA tool can access, they confirm whether the

specific data are what they needed and they get a specific query identifier and the related

information (such as an API key). Such information is utilized in the BIMERR PWMA tool to

automatically retrieve the specific data that were selected in the query from the BIMERR

APIs. In the BIMERR PWMA tool the data used refers to the building data provided by

RenoDSS, like the square meters of a building as in the case of the renovation process of

an external facade and are used by the KPIs Dashboard to calculate the values of different

KPIs, like the renting cost of the building scaffold.

5.2 INTEGRATION WITH ONTOLOGY

The following sections describe the Key Performance Indicator and the Renovation

Process ontologies, explaining the main concepts and properties used for their

construction, and how they model performance indicators and processes utilized by the

PWMA tools. It should be noted that the current model described in this document

represents an evolution of the first conceptualization detailed in D4.2 (BIMERR

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 78 of 104

Consortium, 2020 D4.2) and D6.4 (BIMERR Consortium (2020). D6.4) and introduce the

ontology that is described with more detail in D4.3 (BIMERR Consortium, 2020 D4.3).

By means of this semantic representation, PWMA can share their indicators and defined

processes with other BIMERR applications interested in analyzing or displaying project

management information.

5.2.1 KPI Ontology Description

This ontology described in BIMERR deliverable D4.3 aims to provide the vocabulary to

represent indicators used to monitor the advancement of the project and verify if the

goals or sub-goals established at the beginning of a task or process are being satisfied.

For that purpose, the model should be able to represent not only conceptual information

but also numerical information that will allow the project manager or any other

stakeholder monitor the advancement of the renovation activities. This numerical

information is the result of the assessment of several aspects of the renovation project,

such as total time to finish the project or the planned cost related to the material to be

used. The ontology also covers requirements coming from other BIMERR applications,

such as RenoDSS, that also generates performance indicators.

One of the main entities of the ontology is the kpi:Project which is associated to one or

more kpi:Scenario. The scenarios are linked to the concept kpi:KPI directly or through the

concept kpi:RenovationMeasure, which is also linked to the kpi:KPI. During the

development of the project the indicators defined at the beginning can be assessed to

monitor the progress being made. The model enables to express this fact by establishing

the relationship s4city:quantifiesKPI between a KPI Value and their corresponding

definition (kpi:KPI). Also, if required, a time stamp can be added to the assessed KPI

value, to indicate when this evaluation occurred (saref4city:referestoTime). The KPI

metrics can be calculated based on a set of parameters (kpi:CalculationParameter),

like the time or cost per unit. The current version allows the expression of a KPI

assessments in terms of a range of values if necessary (kpi:minValue and

kpi:maxValue), besides a tolerance property, an absolute and relative deviations are

added to represent the permitted deviation from those limits.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 79 of 104

The PWMA model also includes concepts for goals and sub-goals which main stakeholders

of the project set at the beginning of the renovation process. In order to satisfy these

requirements we introduce the class kpi:Goal and the property kpi:hasSubGoal. A KPI

metric is not a fixed measure, it depends on a context that is defined by the kpi:Project

conditions and the renovation kpi:Scenario finally chosen to be implemented.

To show how to annotate data using the KPI ontology we take the example provided in

Section 6.2 of D6.3 (BIMERR Consortium, 2020 D6.3). This case describes the KPI model

used to estimate the cost related to the “building scaffold” task. This metric needs as input

several parameters: the m2 of scaffold, the price per m2, and the number of days the

scaffold is needed. These parameters are not obtained at once but created at different

stages of the project. For example, the m2 of scaffold and the prices per m2 are estimated

during the initial plan, meanwhile the usage time of the scaffold can only be known after

signing the contract. In the use case, the target cost is estimated at 15 EUR per m2, and

the total m2 of scaffold needed is 1000 m2.

The Figure 49 depicts how this information can be projected into the KPI ontology. Blue

boxes are the ontological concepts previously discussed, and the individuals are

represented by white boxes under the concepts they belong to. The dashed lines are the

relations or attributes described before connecting to individuals or literals, respectively.

The cost measure, represented by the individual data:ScaffoldCost, is of type

kpi:KPI, where their assessment is encoded by the data:ScaffoldCostValue01

instance, which has a numerical value of “300000”, and a unit of measure of “EUR”.

Additionally, we can link the KPI metrics to the parameters needed for its calculation. In

this case, we have the parameter cost per unit, that is represented by the individual

data:ScaffoldCostPerUnit01, encoding the value (15) and the unit of measure

(EUR_M2). The data:ScaffoldCostValue01 has been evaluated within the context of

the project data:BimerrProject01 and the renovation scenario

data:SimulatedScenario01.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 80 of 104

Figure 49 - Example of KPI Ontology Population

5.2.2 Renovation Process Ontology Description

This model represents the processes and tasks defined by PWMA tools to exchange

information with ARIBFA application. The main entity of this ontology is renp:Process,

which is linked to one or more renp:Task and renp:Worker. It is also possible to

indicate to which building:Element, building:Space or building:Storey the

process is related to. In addition, the processes and the task can provide kpi:KPI which

are linked to their corresponding values (kpi:KPIVAlue). Finally, the process are defined

by the attributes renp:name, renp:identifier and can be described by several

attributes about the status and planned dates (renp:executionStatus,

renp:plannedStart, renp:plannedFinish, renp:actualStart,

repn:actualFinish).

Figure 50 shows an example of the renovation process ontology population. In this case

we can see the process data;Process001 about “Facade improvement process”, which

is associated to the project data:Project01 and has two associated tasks

data:Task001 and data:Task002. The first task is to “Install material lift or crane” and

it is executed by data:Worker01 and its execution status is 100%. The next task is

data:Task002 which is performed over the building element data:Wall002 and its

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 81 of 104

execution status is 50%. Both tasks have also associated planned dates for start and

finish.

Figure 50 - Example of Renovation Process Ontology Population

5.3 INTEGRATION WITH THE ADAPTIVE WORKFLOW MANAGEMENT AND AUTOMATION TOOL

The modelling component will directly use the REST API provided by the Adaptive

Workflow Management and Automation tool to upload a ready to execute workflow.

Manual import is still possible using the BPMN DI export feature of the modelling

environment and importing this from the workflow engine user interface. In case of

automatic tasks modeled in the workflow, it is possible to define the task behaviour

specifying parameters in a specific JSON structure that the workflow engine recognizes

and uses to configure the service parameters (with values defined in the Master

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 82 of 104

Information Delivery Plan schedule), as shown in Figure 51, and perform the automatic

action defined in the task, i.e., notify a resident about a health and safety related issue or

send a notification in form of mail to instruct a building surveyor to start the BIM

modelling process.

Figure 51 - Services Configuration UI in Workflow

Information on the running workflow is available through specific REST APIs provided by

the workflow engine and returned in JSON format. The KPIs Dashboard of the BIMERR

Renovation Process Simulation component can retrieve and visualise such information

and use it for the KPI calculation process.

The workflow execution engine will receive from BIF information about the locations –

sectors of the building. This information is going to be used to map the ongoing processes

to the locations. This mapping is needed to generate notifications about the locations

affected by the ongoing reconstruction process.

The workflow execution engine will provide information to other components via BIF. A

JSON with the process log of the whole reconstruction process including all of its task’s

attributes (both planned and real recorded) will be made available via BIF.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 83 of 104

The workflow execution engine will also provide notifications to other components. The

already identified requirements to provide notifications are:

- List of planned affected locations.

- List of planned activities with time plan on selected location.

- List of finished tasks.

- List of rescheduled tasks.

- List of tasks with issues.

- Issue Reporting (two-way):

o From renovation manager as notification.

o From residents to Renovation Manager for review and acknowledgement.

- Health and Safety Notifications.

5.4 OPEN INTEGRATION FRAMEWORK

The Microservice Framework Olive15 is used as the basis for the development of all the

services and functionalities of the BIMERR Design environment, related in particular to

the integration with external components and BIF.

Olive is a platform that allows to create Web applications through configuration of existing

components, both for the backend and for the frontend side. For the backend side such

components are named Connectors, and their configuration results in ready to use REST

microservices. For the frontend side such components are named Widgets and their

configuration results in a web rendered ready to use user interface.

Both the Connectors and the Widgets are part of the Olive platform but can be extended

in case of needs, using plug-ins. Connectors provide the functionalities of your backend

services enabling the connection to external systems like databases and message buses.

Olive allows to orchestrate such functionalities resulting in the definition of your business

logic. Widgets on the other side are reusable components for the frontend and provide

15 https://www.adoxx.org/live/olive

https://www.adoxx.org/live/olive

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 84 of 104

the UI for sections of your web application. Widgets can be generics like visualising a grid

layout or more specifics like visualising the simulation or the KPIs dashboard interfaces.

The strong point of Olive is its model awareness in the sense that such configurations are

abstract enough that can be represented as models and the out-of-the-box integration

with the ADOxx modelling environment allows to create the whole looks and behaviour

of your web application, drawing models. This integration allows also to use models as

data for microservices. An example is the process simulation microservice that simulates

process models taking them directly from the ADOxx modelling platform, or the KPIs

evaluator microservice that evaluates KPIs defined in models available in the ADOxx

modelling platform.

Figure 52 - Olive High Level Overview

The Olive platform provides a cloud environment where the user can define the

microservices and the user interfaces of its web applications, expose it to the public and

allow to control its lifecycle.

The Microservice Controller part of the Olive framework, is used in the PWMA

environment of BIMERR as integration framework, allowing to create microservices that

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 85 of 104

collect and exchange data with the involved BIMERR components. The Olive Microservice

Controller is a backend component that allows to define and manage Microservices in a

novel way, following the configuration approach. A Microservice in Olive is defined only

through the configuration of an existing platform component named Connector.

A Connector is a component developed in form of OSGi plug-in that allow to provide a

specific functionality, like perform a query on a MySQL database or publish a post on

Twitter. The name Connector derive from the fact that usually such functionalities depend

on external systems (like the database) and the Connector is responsible to connect to

such systems to exploit their features.

Olive Microservice Controller allows to manage the configurations of such Connectors,

giving the possibility to create Microservices and control their whole lifecycle. Is

responsibility of the lifecycle management component to (1) generates an instance of the

REST microservice from the configuration, (2) allows to start the microservice, (3) keeps

the microservice running in an isolated environment, (4) allows to stop the microservice

and (5) allows to dismiss it.

The OSGi Connectors Loader component is responsible to load all the Connectors and

make them available to the platform. It is built on the OSGi framework Apache Felix16 and

will dynamically check the presence of the OSGi bundles (plug-ins) defining Connectors,

loading, and unloading them on request.

As soon as the Microservices have been defined, they can be combined to achieve the

business logic task, thanks to the Orchestrator component. This component is

responsible to combine existing microservices using the Enterprise Integration Pattern17

notation. To support a higher level or freedom the orchestrator allows also to use the

JavaScript scripting language to combine microservices following so a more programmatic

approach.

16 https://felix.apache.org/

17 https://www.enterpriseintegrationpatterns.com/

https://felix.apache.org/
https://www.enterpriseintegrationpatterns.com/

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 86 of 104

The Olive Microservice Controller expose all this functionality both with Java and REST

APIs. The former is used to integrate the Olive platform in local and desktop application.

The latter is used to integrate the Olive platform with remote applications. Over the REST

APIs, a management web user interface has been made available that allows to exploit all

the features of the Olive Microservice Controller through the web browser.

Figure 53 - Olive Microservice Controller Architecture

5.4.1 Microservice Definition Model Type

The Microservice Definition Model type is an ADOxx library that allows to model the exact

behaviour of microservices and publish them in the Olive Microservice Framework. The

definition of microservice using models is possible thanks to the nature of the Olive

platform that defines microservices through configuration. In this way the models can be

used not only to document but also to configure the microservice behaviour.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 87 of 104

Figure 54 - Microservice Definition Model Sample

A Microservice Definition Model is composed of objects representing microservices of

different types, based on the Olive Connector used, and relations representing

dependencies between microservices. Each of the specific microservice type objects has

a set of common and specific attributes accessible from its notebook. Common attributes

are the description of the microservices and its auto-start value as well as all the attributes

related to the input and output. The microservice inputs can be specified in a tabular form

where each row is an input with information about its id, placeholder, description, and

sample. The output can be instead adapted providing a specific JavaScript algorithm with

the relative description of the new output.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 88 of 104

Figure 55 - Microservice Definition Model, Input and Output Attributes

Health information are the last set of common attributes to all microservice objects and,

like in the web interface, the user is allowed to specify the JavaScript algorithm that will

be applied in order to validate the microservice output and check if the service is running

properly or not.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 89 of 104

Figure 56 - Microservice Definition Model, Start and Call Attributes

The notebook sections named “Start” and “Call” contain instead the microservice specific

attributes dependent on the Olive Connector used. In the example in Figure 56 the

microservice is based on the Olive REST Connector and the “Start” related attributes allow

to specify the HTTP method, Content type and headers of the REST request to perform,

while in the “Call” section there are attributes related to the REST endpoint, query-string,

and the optional data to post.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 90 of 104

Figure 57 - Microservice Definition Model, Publishing feature

As soon as the microservice model is completed it can be published directly from the

modelling environment thanks to the “Publish Microservice” function available in the

“Extra” menu bar. The function will prompt for the endpoint of the Olive Microservice

framework to use for the deployment, and it will automatically make it live.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 91 of 104

6. CATALOGUE OF TOOLS FOR RENOVATION PROCESSES

This chapter describes where to download and how to setup and configure every tool

presented in this deliverable.

6.1 DESIGN TOOLS

The design tool is provided in two versions: a community edition that everyone can

download based on the desktop version of the ADOxx application, and a cloud version,

deployed in the BOC cloud at https://bimerr.boc-group.eu/ADONISNP10_0/, that can be

downloaded and installed locally only with a license. In the following the setup instruction

of both cases are reported.

6.1.1 Community version of the Renovation process and KPIs design tool

The community version of the renovation process and KPI design tool require the

installation of the ADOxx modelling platform and subsequently the installation of the

library for modeling BPMN and the one created in BIMERR for the KPIs modeling. The

following instructions will guide you through the installation of the community version of

the renovation process design tool:

1. Download the ADOxx platform at https://www.adoxx.org/live/download-guided

2. Install it following the instructions provided in the page relative to your operating

system.

3. Download the BPMN2.0 library from here: https://git.boc-group.eu/bimerr/fast-

deploy-package/-/blob/master/MODELS/BPMN/BPMN2Library.abl

4. Download the KPI library from here: https://git.boc-group.eu/bimerr/fast-deploy-

package/-/blob/master/MODELS/KPI/KPIMMLibrary.abl

5. Install the BPMN and the KPI library in the ADOxx platform following the

instruction provide in this video:

https://www.adoxx.org/live/import_new_application_library

6. Download the sample BPMN models from here: https://git.boc-

group.eu/bimerr/fast-deploy-package/-

https://bimerr.boc-group.eu/ADONISNP10_0/
https://www.adoxx.org/live/download-guided
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BPMN2Library.abl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BPMN2Library.abl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/KPIMMLibrary.abl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/KPIMMLibrary.abl
https://www.adoxx.org/live/import_new_application_library
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BIMERR%20-%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BIMERR%20-%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 92 of 104

/blob/master/MODELS/BPMN/BIMERR%20-

%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl

7. Download the sample KPI model from here: https://git.boc-group.eu/bimerr/fast-

deploy-package/-/blob/master/MODELS/KPI/BIMERR%20-

%20Building%20Scaffold%20-%20KPI%20Model%20v2.adl

8. Import the downloaded sample models following the instruction provided in this

video: https://www.adoxx.org/live/import_models_adl

6.1.2 Cloud-Based Renovation Process Design Tool

The cloud version of the renovation process design environment is accessible using the

BOC cloud deployed instance at https://bimerr.boc-group.eu/ADONISNP10_0/.

The integration with the BIMERR Identity provider Keycloak is currently ongoing so an

internal login system is currently used. Credentials can be freely requested on

faq@adoxx.org and as soon as the integration with the BIMERR Identity provider is

completed the modelling environment could be accessed in Single Sign On with the same

credentials of the other BIMERR tools.

6.1.3 Standalone package of the Cloud Renovation Process Design Tool

The standalone package contains an easy way to deploy the cloud modelling environment

for both production and testing purposes. The repository https://git.boc-

group.eu/bimerr/adonis-fast-deployment-package contains the deployment package to

download. The repository is private and accessible only after the acquisition of a valid

setup license.

The only requirement for this package is the presence of Microsoft SQLServer already

installed. Instructions are available inside the package in order to correctly deploy it.

https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BIMERR%20-%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BIMERR%20-%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/BIMERR%20-%20Building%20Scaffold%20-%20KPI%20Model%20v2.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/BIMERR%20-%20Building%20Scaffold%20-%20KPI%20Model%20v2.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/BIMERR%20-%20Building%20Scaffold%20-%20KPI%20Model%20v2.adl
https://www.adoxx.org/live/import_models_adl
https://bimerr.boc-group.eu/ADONISNP10_0/
mailto:faq@adoxx.org
https://git.boc-group.eu/bimerr/adonis-fast-deployment-package
https://git.boc-group.eu/bimerr/adonis-fast-deployment-package

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 93 of 104

6.2 MONITORING, EVALUATION, REFLECTION, AND INNOVATION TOOLS

The monitoring and evaluation tools demonstrated in chapter 3 as well as the reflection

and innovation tools demonstrated in chapter 4 can be downloaded in an all-in-one

standalone package that simplify the deployment and testing of the demonstrated

features. The standalone package is available in the ADOxx community portal for BIMERR

project at https://adoxx.org/live/web/bimerr/downloads. Here the users can also find all

the demonstrated tools in form of single packages ready to be tested locally. Additionally,

demo videos and documentation are available on the same page for every package in

order to document the deployment process and usage.

https://adoxx.org/live/web/bimerr/downloads

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 94 of 104

6.3 OPEN INTEGRATION FRAMEWORK OLIVE

This section will contain the instructions to build and setup the Olive Microservice

Controller framework. This framework is a dependency for most of the tools presented in

this deliverable and its presence is required to execute them.

The Olive framework is accessible from the main ADOxx page at https://www.adoxx.org/

through the “GET ACCESS” green button visible in Figure 58. From this page is possible to

download all the available Olive packages and access all the documentation materials

needed to get started and work with the Olive framework.

Figure 58 - ADOxx Olive Homepage

Four different deployment modalities have been provided for the Olive Framework:

• Source code compilation: to have the full control and perform changes in the

code. Suggested for development.

https://www.adoxx.org/

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 95 of 104

• Manual setup: to have the full control of the deployment process. Suggested for

production deployment in legacy systems that cannot use the Docker technology.

• All in one standalone package: useful for local testing of the platform. The full

product is provided in a standalone package without external dependencies and

that do not need installation. This modality will work only on window operating

system.

• Docker setup: a production ready deployment based on Docker container. This is

the best option to test on machines supporting the Docker technology and for

production deployment.

All the packages (available at https://www.adoxx.org/live/olive) have a “getting started”

and “usage manual” available in order to document their features and installation

procedures.

https://www.adoxx.org/live/olive

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 96 of 104

7. CONCLUSION AND OUTLOOK

This deliverable demonstrates the functional capabilities of the PWMA ecosystem

supporting the renovation process management and in particular the process simulation,

formal verification, monitoring and evaluation as well as the integration with other

BIMERR components. The technology that is described in this deliverable corresponds to

the approach that is described in D6.3 “Adaptive Renovation Process & Workflow Models

2”.

This document explains the renovation process management tool ecosystem as follows:

• Firstly, using the meta-modelling platform ADOxx, and configuring it for renovation

process management, KPI Models and Data Models in so-called ABL files. The

platform can be downloaded for academic use at www.adoxx.org, whereas the

used ABL files can be downloaded at www.adoxx.org under developer

communities/developer spaces/BIMERR.

• Secondly, the Microservice Framework Olive is used to provide a set of functional

capabilities for the models related to the integration with other BIMERR

components. The framework is provided as a download package at ADOxx.org

following the link to Olive download.

• Thirdly, the BIMERR specific set of microservices that provide the functionality

described in this document, is also provided as a package. It can be downloaded

on ADOxx.org, following the link to download Olive and selecting the latest BIMERR

download package to get the latest version.

• Fourthly, in case of accessing and integrating third party applications like the

process mining tool or the xWiki platform, the corresponding download links to

the development communities are listed in the development space on ADOxx.org

as the ABL files mentioned in topic one above.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 97 of 104

BIBLIOGRAPHY

BIMERR Consortium (2020). D4.2 BIMERR Ontology & Data Model 1

BIMERR Consortium (2020). D4.3 BIMERR Ontology & Data Model 2

BIMERR Consortium (2020). D4.5 BIMERR Building Semantic Modelling tool 2

BIMERR Consortium (2020). D4.7 BIMERR Information Collection & Enrichment Tool 2

BIMERR Consortium (2020). D4.9 Integrated Interoperability Framework 2

BIMERR Consortium (2020). D6.3 – Adaptive Renovation Process & Workflow Models 2.

BIMERR Consortium (2020). D6.4 – Renovation Process Simulation Tool 1.

Kaplan, Robert S., and David Norton (1992). "The Balanced Scorecard: Measures that Drive

Performance." Harvard Business Review 70, no. 1.

Tchana de Tchana Y., Ducellier G. and Sébastien R. (2019). Designing a unique Digital Twin

for linear infrastructures lifecycle management. Procedia CIRP 2019 – 84 - 545-549.

10.1016/j.procir.2019.04.176.

Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of business

process models in BPMN. Information and Software Technology, 50(12):1281–1294,

November 2008.

LearnPAd Consortium (2015). D4.1 - Quality Assessment Strategies for BP Models.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 98 of 104

ANNEX

BPMN Mapping to Petri Net

Initially based on the work from (Dijkman, et al., 2008) and resulting from the LearnPAd

EU Project (LearnPAd 2015, D4.1), the BPMN to Petri-net mapping has been extended to

support more BPMN elements and better align with its semantics. The proposed

approach constructs the petri-net incrementally, choosing the Petri-Net elements

required to represent each specific BPMN object, based on its behaviour specified by the

OMG standard 18 and then connecting the petri-net elements following the BPMN

relations in the model.

Additionally, to externalize the mapping definition and make the simulation possible also

using models different from BPMN, we defined a Domain Specific Language (DSL) able to

represent a mapping rule in textual format, understandable by the importer module of

the simulation component, that will use it during the model parsing in order to

automatically generate a petri-net. In the following lines, the syntax of the created DSL for

mapping rules is provided:

MappingFormula = MapRules ";" InputRelations ";" OutputRelations

MapRules = elementTypeList ":" RuleList

InputRelations = "in :" relationList

OutputRelations = "out :" relationList

elementTypeList = ElementTypeName ["|" elementTypeList]

ElementTypeName: the type name of the object you want to map

RuleList = Rule ["," RuleList]

Rule = from ">" to | from

18 https://www.omg.org/spec/BPMN

https://www.omg.org/spec/BPMN

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 99 of 104

from: name of the PN element you want to create/use for connection with the

"to" element; this name must start with "p" in order to refer to a place or

with "t" in order to refer to a transition. In case of place is it possible

to specify the number of tokens between parenthesis "(numtoken)".

to: name of the PN element you want to create/use for connection with the

"from" element; this name must start with "p" in order to refer to a place

or with "t" in order to refer to a transition. In case of place is it possible

to specify the number of tokens between parenthesis "(numtoken)".

relationList = relation ["," relationList]

relation = RelationType "=" PNElementName

RelationType: name of the relation type you want to map.

PNElementName: name of the PN element defined in the from/to you want to use

for the relation.

Considering the defined mapping rules syntax, the following formulas have been created

for each BPMN element. Only the mapping for the most common BPMN elements will be

presented in this section:

• Start Event:

start: p(1)>t ; in: message=t; out:sequence=t

A start event is converted in a place containing one token followed by a transition.

It has no incoming sequence flows but can have incoming message flows that will

be attached to its transition. and can have only outgoing sequence flow relations

connected to the transition as starting point. This will reflect the semantic of a start

event that in case of multiple outgoing sequence flows, they are executed in

parallel and in case of multiple incoming messages the start will not occur as soon

as all the messages are arrived.

• End Events:

end|terminate|error: p0>t,t>p1 ; in: sequence=p0 ; out: message=t

The end event as well as the terminate and the error events are converted to three

petri-net elements. A place can be followed by a transition followed by another

place. The incoming sequence flows go to the first places while the outgoing

message flows start from the transition. No outgoing sequence flows or incoming

message flows are allowed in an end event.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 100 of 104

• Task:

task: p>t; in:sequence=p, message=t; out:sequence=t, message=t, bound=p

A task is represented as a place followed by a transition. The same mapping applies

to all type of tasks like Sub-Task, User-Task, Service-Task, Manual-Task, Business-

Task, Receive-Task, Send-Task and Script-Task. All the incoming sequence flows are

connected to the place while the outgoing sequence flows will be connected to the

transition. This happens because a task in BPMN will start as soon as each input

flow arrives and at its terminate it will activate all the outgoing flows in parallel.

Incoming and outgoing messages are instead attached to the transition because

each incoming message flow will block the execution of the task until the message

arrives. Tasks can also have bounded events attached. In such cases the outgoing

connection to the event will be connected to the task place.

• Looping Task:

taskLoop: p0>t0,t0>p1,p1>t2,p1>t1,t1>p0 ; in:sequence=p0, message=t0 ;

out:sequence=t2, message=t0, bound=p0

The looping task follows the same concepts of the task but in this case as soon as

it is completed, it can be executed again. So, it is mapped to a place followed by a

transition followed by a second place followed by two transitions, one of which go

back to the first place. Inputs and outputs sequence flows follows the same logic

of the task while the messages are connected to the internal transition in order to

wait for the message to arrive in order to continue the task execution.

• Exclusive Gateway:

xor : p ; in:sequence=p ; out:sequence=p

The Exclusive gateway (both Converging and Diverging) as well as the Event-Based

gateways are mapped to a single petri-net place accepting all the incoming and

outgoing sequence flows. In this way it is executed as soon as a token arrives and

only one choice is performed at the end for the outgoing sequence flows.

• Parallel Gateway:

and : t ; in:sequence=t ; out:sequence=t

The Parallel gateway (both Converging and Diverging) are mapped to a single petri-

net transition, accepting all the incoming and outgoing sequence flows. In this way

it is executed only when all the incoming sequence flows have a token and after its

execution will send a token to all the outgoing sequence flows.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 101 of 104

The mapping process begin parsing first all the BPMN objects in the model and, applying

the defined rules, the petri-net elements are created. Then all the BPMN relations are

processed, and the created petri-net elements are connected looking at the input and

output section of the rule for the specific element. This approach allows to create valid

petri-net models that reflect the BPMN behaviour in a modular way and that can be

adapted to map other executable models to petri-net.

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 102 of 104

Properties to Computation Tree Logic Mapping

In this section it is described how the properties that the verification component can

analyze, are converted in CTL. The CTL syntax uses the following most common elements:

• A: means “All” and instructs to find all the paths starting from the current state.

• E: means “Exists” and instructs to find at least one path staring from the current

state.

• G: means “Globally” and instructs to find all the subsequent paths.

• F: means “Finally” and instructs to find on at least one of the subsequent paths.

• ->: means “Implication” and is the classic “if … then” logical connector.

• AND: is the logical AND operator.

• OR: is the logical OR operator.

• NOT: is the logical NOT operator.

• oo: is a numeric constant that means “infinite”.

• DEADLOCK: is a LOLA keyword indicating that no petri-net transitions are fireable.

Based on the supported syntax the following properties are defined:

Deadlock existence:

A deadlock exists when all the petri-net transitions are not fireable and the process in not

yet terminated, meaning that there are still tokens in places that are not final. Based on

this assumption the obtained formula is:

“EF (DEADLOCK AND (_place1_name_ > 0 OR _place2_name_ > 0 OR …))”

Where _place1_name_ is the name of one non final place and the expression

“_place1_name_ > 0” that is repeated for every non final place, means that the numbers

of tokens in that place is greater than zero.

This property will find the existence of at least one deadlock. To automatically check all

the deadlocks, the verification engine will apply the same formula multiple times,

excluding, after finding a deadlock, all the places involved in that deadlock from the next

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 103 of 104

formula. This iteration will continue as soon as no more deadlocks are detected or no

more places to exclude are available.

Unboundedness existence:

The petri-net model is unbounded when at least one of its places is unbounded. Based

on this assumption we can define the following formula:

“EF (_place1_name_ = oo)”

The formula checks if at some point the number of tokens in the place “_place1_name_”

will grow to infinite and must be verified for all the places or at least for all the final places.

In order to limit the state explosion problem, we decided to evaluate each formula

independently and combine the results at the end checking if at least one failed, instead

of creating a single formula with multiple OR conditions.

Reachability:

Checking if an activity is reachable means checking if the respective places in the petri-net

model will contain a token at some point in time. As described in section 3.3.1 this type of

check allows to perform four kind of analysis:

- Check if the activity is always reachable:

“AF (_place_name_ >0)”

- Check if the activity is sometimes reachable:

“EF (_place_name_ >0)”

- Check if the activity is always not reachable:

“AG NOT (_place_name_ >0)”

- Check if the activity is sometimes not reachable:

“EG NOT (_place_name_ >0)”

Where “_place_name_” is the name of the petri-net place associated to the specific activity.

Path Existence:

Deliverable D6.5◼ 06/2021 ◼ BOC

BIMERR project ◼ GA #820621

Page 104 of 104

Checking a path existence between two activities means to check if the second activity will

be executed at some point after the first one. As described in section 3.3.1 we have eight

possible cases and assuming “_first_place_name_” and “_second_place_name_” to be the

namse of the petri-net places associated respectively to the first and second activities we

can identify the following properties:

- Existence of at least one path from the start to the end activities:

“AG ((_first_place_name_ > 0) -> EF (_second_place_name_ > 0))”

- Existence of at least one path that does not start with the first selected activity but

does end with the second selected activity:

“AG (NOT (_first_place_name_ > 0) -> EF (_second_place_name_ > 0))”

- Existence of at least one path that does start with the first selected activity but

does not end with the second selected activity:

“AG ((_first_place_name_ > 0) -> EG NOT (_second_place_name_ > 0))”

- Existence of at least one path that does not start with the first selected activity and

does not end with the second selected activity:

“AG (NOT (_first_place_name_ > 0) -> EG NOT (_second_place_name_ > 0))”

- Every path goes from the start to the end activities:

“AG ((_first_place_name_ > 0) -> AF (_second_place_name_ > 0))”

- Every path does not start with the first selected activity but does end with the

second selected activity:

“AG (NOT (_first_place_name_ > 0) -> AF (_second_place_name_ > 0))”

- Every path starts with the first selected activity but does not end with the second

selected activity:

“AG ((_first_place_name_ > 0) -> AG NOT (_second_place_name_ > 0))”

- Every path does not start with the first selected activity and does not end with the

second selected activity:

“AG (NOT (_first_place_name_ > 0) -> AG NOT (_second_place_name_ > 0))”

