

This project has received funding from the European Union’s Horizon 2020 Research and

innovation programme under Grant Agreement n°820621

Project Acronym: BIMERR

Project Full Title: BIM-based holistic tools for Energy-driven Renovation of existing

Residences

Grant Agreement: 820621

Project Duration: 42 months

DELIVERABLE D6.4

Renovation Process Simulation Tool 1

Deliverable Status: Final

File Name: BIMERR-D6.4-v1.1

Due Date: 20/06/2020 (M18)

Submission Date: 30/06/2020 (M18)

13/10/2020 (revised)

Task Leader: BOC (T6.3)

Dissemination level

Public X

Confidential, only for members of the Consortium (including the Commission Services)

Ref. Ares(2020)5452616 - 13/10/2020

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 2 of 101

Disclaimer

BIMERR project has received funding from the European Union’s Horizon 2020 Research and

innovation programme under Grant Agreement n°820621. The sole responsibility for the content

of this publication lies with the authors. It does not necessarily reflect the opinion of the European

Commission (EC). EC is not liable for any use that may be made of the information contained

therein.

The BIMERR project consortium is composed of:

FIT
Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung
E.V.

Germany

CERTH Ethniko Kentro Erevnas Kai Technologikis Anaptyxis Greece

UPM Universidad Politecnica De Madrid Spain

UBITECH Ubitech Limited Cyprus

SUITE5 Suite5 Data Intelligence Solutions Limited Cyprus

HYPERTECH
Hypertech (Chaipertek) Anonymos Viomichaniki Emporiki Etaireia
Pliroforikis Kai Neon Technologion

Greece

MERIT Merit Consulting House Sprl Belgium

XYLEM Xylem Science And Technology Management Gmbh Austria

CONKAT
Anonymos Etaireia Kataskevon Technikon Ergon, Emporikon
Viomichanikonkai Nautiliakon Epicheiriseon Kon'kat

Greece

BOC Boc Asset Management Gmbh Austria

BX Budimex Sa Poland

UOP University Of Peloponnese Greece

UEDIN University of Edinburgh United Kingdom

NT Novitech As Slovakia

UCL University College London United Kingdom

FER Ferrovial Agroman S.A Spain

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 3 of 101

AUTHORS LIST

Leading Author (Editor)

Surname First Name Beneficiary Contact email

Falcioni Damiano BOC damiano.falcioni@boc-eu.com

Co-authors (in alphabetic order)

Surname First Name Beneficiary Contact email

1 Chávez-Feria Feria UPM serge.chavez.feria@upm.es

2 Demeter Dominik NT demeter_dominik@novitech.sk

3 Kanóc Csaba NT Kanoc@novitechgroup.sk

4 Lampathaki Fenareti SUITE5 fenareti@suite5.eu

5 Poveda-Villalón María UPM mpoveda@fi.upm.es

6 Vergeti Danae UBITECH vergetid@ubitech.eu

7 Woitsch Robert BOC robert.woitsch@boc-eu.com

REVIEWERS LIST

List of Reviewers (in alphabetic order)

Surname First Name Beneficiary Contact email

1 Csaba Kanóc NT Kanoc@novitechgroup.sk

2 Dominik Demeter NT Demeter@novitechgroup.sk

3 Martin Mojžiš NT Mojžiš@novitechgroup.sk

4 Tsakiris Thanos CERTH atsakir@iti.gr

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 4 of 101

REVISION CONTROL

Version Author Date Status

0.1 BOC 09/04/2020 ToC

0.2 BOC 04/06/2020 Merged UPM contribution

0.3 BOC 08/06/2020 Merged NT contribution

0.4 BOC 09/06/2020 Merged SUITE5 contribution

0.5 BOC 10/06/2020 Ready for Internal Review

1.0 BOC 22/06/2020 Ready for submission

1.1 BOC 13/10/2020 Integrating reworked UI for

smart glasses (pp 56) from NT.

Ready for re-submission.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 5 of 101

TABLE OF CONTENTS

List of Figures.. 8

List of Tables ... 12

ACRONYMS ... 13

EXECUTIVE SUMMARY .. 14

1. Introduction ... 16

1.1 Objectives of the Deliverable ... 16

1.2 Introduction of Taxonomy and Methodology ... 17

1.2.1 Designing Tool for Renovation Processes ... 18

1.2.2 Monitoring and Evaluation Tool for Renovation Processes .. 19

1.2.3 Innovation and Reflection Tools for Renovation Processes .. 19

1.2.4 Development Methodology .. 20

1.3 Structure of the Deliverable ... 20

2. Design Tools for Renovation Process .. 22

2.1 Renovation Process and Workflow Design Tool .. 22

2.2 Renovation Process KPI Design Tool ... 27

3. Monitoring and Evaluation Tool for Renovation Processes .. 35

3.1 Renovation Processes-Oriented KPI Dashboards ... 35

3.1.1 Models-based Monitoring Dashboards demonstration .. 36

3.1.2 Models-based Monitoring Dashboards architecture .. 39

3.2 Simulation Tools for Renovation Processes ... 43

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 6 of 101

3.2.1 Simulation tool demonstration use case ... 43

3.2.2 Simulation tool architecture ... 48

3.3 Creation of Digital Twin with Workflow Execution .. 51

4. Reflection and Innovation Tools For Renovation Processes 60

4.1 Process Mining of Renovation Process.. 60

4.1.1 Logs preparation for Celonis ... 60

4.1.2 Creation of Analysis Workspace .. 61

4.2 Collaborative Reflection of Renovation Process .. 64

4.2.1 Model Wiki application ... 64

4.2.2 Model Wiki sample use case ... 68

5. Integration with BIMERR Tools ... 71

5.1 Integration with BIF ... 71

5.2 Integration with Ontology .. 72

5.2.1 Ontology Model Explanation ... 72

5.2.2 Model Instantiation ... 75

5.3 Integration with Workflow... 76

5.4 Open Integration Framework ... 77

5.4.1 Microservice definition ... 80

5.4.2 Microservice instantiation... 84

5.4.3 Microservice Controller User Interface ... 86

6. Catalogue of Tools for Renovation Processes .. 91

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 7 of 101

6.1 Design Tools .. 91

6.1.1 Community version of the Renovation process and KPIs design tool ... 91

6.1.2 Cloud based Renovation process design tool .. 92

6.1.3 Fast deployment of the cloud Renovation process design tool .. 92

6.2 Workflow Execution Tools ... 92

6.3 Monitoring and Evaluation Tools.. 93

6.3.1 Fast deployment package ... 93

6.4 Reflection and Innovation Tools ... 94

6.4.1 Process Mining with Celonis.. 94

6.4.2 Collaboration with Model Wiki ... 94

6.5 Open Integration Framework OLIVE ... 95

6.5.1 Source code compilation ... 96

6.5.2 Manual setup .. 97

6.5.3 Fast deployment package setup.. 97

6.5.4 Docker setup ... 98

7. Conclusion and Outlook.. 99

BIBLIOGRAPHY .. 101

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 8 of 101

LIST OF FIGURES

Figure 1 - Ecosystem overview .. 18

Figure 2 - Renovation process design tool community version ... 23

Figure 3 - Renovation Process Cloud Modelling Environment ... 24

Figure 4 - Renovation Process Cloud Modelling Environment Main Interface 25

Figure 5 - Renovation Process Cloud Modelling Environment Design Interface 26

Figure 6 - KPI model .. 28

Figure 7 - Goals attributes .. 28

Figure 8 - KPI Attributes ... 29

Figure 9 - Data calculation model .. 30

Figure 10 - Metric Attributes .. 31

Figure 11 - Data Items Attributes ... 33

Figure 12 - Renovation process KPIs design tool community version ... 34

Figure 13 - Renovation KPI cockpit use case ... 35

Figure 14 - Backward-looking Monitoring and Forward-Looking Simulation of KPI-Scaffold

Costs .. 37

Figure 15 - Simulation Output for KPIs .. 38

Figure 16 - KPIs Dashboard architecture ... 39

Figure 17 - KPI dashboard chart widget .. 40

Figure 18 - KPI dashboard table widget .. 41

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 9 of 101

Figure 19 - KPI dashboard image widget .. 41

Figure 20 - KPI dashboard tree widget .. 42

Figure 21 - Renovation process Simulation inputs .. 43

Figure 22 - Renovation process simulation input C_START_EVENT .. 44

Figure 23- Renovation process simulation input C_TASK ... 45

Figure 24 - Renovation process simulation input calculation ... 46

Figure 25 - Renovation process simulation general results ... 46

Figure 26 - Renovation process simulation detailed results .. 48

Figure 27 - Renovation process simulation engine architecture .. 49

Figure 28 - Renovation workflow process imported to I3D ... 51

Figure 29 - Adjustable reconstruction process template .. 52

Figure 30 - Visualized running reconstruction process.. 53

Figure 31 - Interaction with the objects of the reconstruction process .. 53

Figure 32 - Evidence of planned and collected attributes .. 54

Figure 33 - Output of the execution engine – list of attributes and notifications connected to

the tasks ... 54

Figure 34 - Export of all the executed instances connected to a reconstruction process

template ... 55

Figure 35 - Sub processes of the task... 56

Figure 36 – Smart glasses application for on-site support of workers running on Head

Mounted Display .. 57

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 10 of 101

Figure 37 – Smart glasses application for on-site support of workers – log-in screen 57

Figure 38 - Application for on-site support of workers to execute assigned tasks – list of

assigned tasks .. 58

Figure 39 - Details of the assigned task ... 58

Figure 40 - Celonis logs preparation ... 61

Figure 41 - Celonis Analysis Workspace for BIMERR .. 63

Figure 42 - Excel Output .. 63

Figure 43 - Model Wiki use case scenario... 65

Figure 44 - Model Wiki architecture .. 66

Figure 45 - Model-to-Wiki UI Widget .. 67

Figure 46 - Wiki-to-Model UI Widget .. 68

Figure 47 - Facade Renovation Process to Wiki.. 68

Figure 48 - Wiki pages generated for the Facade Renovation Process ... 69

Figure 49 - Wiki-to-Model UI widget for the Facade Renovation process 70

Figure 50 - Comments imported for the Building Scaffold task of the Facade Renovation

process .. 70

Figure 51 - KPI conceptualization. ... 75

Figure 52 - Example of KPI Ontology Population .. 76

Figure 53 - Olive high level overview .. 78

Figure 54 - Olive Microservice Controller Architecture .. 80

Figure 55 - Olive Microservice REST endpoint sample using SoapUI... 85

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 11 of 101

Figure 56 - Olive Microservice Controller Management UI - Main view ... 86

Figure 57 - Olive Microservice Controller Management UI - Test view ... 87

Figure 58 - Olive Microservice Controller Management UI - Edit/New Microservice view

collapsed .. 88

Figure 59 - Olive Microservice Controller Management UI - Edit/New Microservice view

expanded ... 90

Figure 60 - Workflow execution registration form .. 93

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 12 of 101

LIST OF TABLES

Table 1 - Renovation process simulation general results details ... 47

Table 2 - Ontology Prefixes and Namespaces... 73

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 13 of 101

ACRONYMS

Acronym Meaning

API Application Programming Interface

BIF BIMERR Interoperability Framework

BIMERR BIM-based holistic tools for Energy-driven Renovation of existing Residences

BPMN Business Process Model Notation

FaaS Function as a Service

KPI Key Performance Indicator

MIME Multipurpose Internet Mail Extensions

OSGi Open Service Gateway initiative

PWMA Process & Workflow Modelling & Automation

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 14 of 101

EXECUTIVE SUMMARY

This document describes the first set of renovation process management tool, which we

consider as an ecosystem of applications, Software as a Service Offerings, Microservices, as well

as 3rd party applications.

The provided renovation process management environment has two types of flexibility to

enable configuration and adaptation. First we use the meta-modelling platform ADOxx that

enables the configuration of Process modelling notation, KPI modelling notation and Data

modelling notation by providing a full-fledged process model repository. The repository uses

conceptual meta-models to define the modelling language, hence the modelling language can

be adapted to the particular needs of BIMERR and aligned with the BIMERR ontology to use

the same semantic. This semantic alignment enables the seamless use of data that come from

other BIMERR applications. The ADOxx platform can be downloaded for academic use for free

at adoxx.org and the corresponding BIMERR specific configurations are provided for download

in the so-called development space of the developer community on the adoxx.org webpage.

To provide features, services and tools for the ecosystem around the process management

platform, we used the Microservice framework Olive. In particular, using Olive, we provide:

(i) Features like (a) the knowledge-based simulation of renovation processes, (b) the

dashboard visualization of renovation process status, (c) the co-creative reflection of the

renovation process using XWIKI and generating pages from models and feedback

comments from pages into the models.

(ii) Connectors to third party tools like (a) to export process models for execution to a

workflow engine, (b) to import data from the BIMERR integration framework that are

display the status of the renovation process, (c) to interact with Process Mining tool that

analysis the process execution after the renovation process has been complete in order to

create lessons learned for the next project.

The functional capabilities had been defined in the corresponding D6.2 “Adaptive Renovation

Process & Workflow Models 1”. The deliverable at hand therefore explains the technical

concepts, the tool functionality of the requested features and provide the different applications

for download at www.adoxx.org.

http://www.adoxx.org/

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 15 of 101

In parallel to the iteration of D6.2 which improves the way how renovation process

management is performed in BIMERR, the follow up proposal of this document D6.5 will

correspondingly adapt the tool set to provide better support for the renovation process

management as well as to better integrate 3rd party tools into the updated renovation process

management ecosystem.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 16 of 101

1. INTRODUCTION

1.1 OBJECTIVES OF THE DELIVERABLE

This deliverable provides the first set of Features for Renovation Process Modelling.

This deliverable corresponds with Deliverable D6.2 “Adaptive Renovation Process & Workflow

Models 1” and provide the technological basis in order to perform renovation process

management. This document therefore focuses on the tools, infrastructures and technical

frameworks that are provided in order to enable renovation process management.

Process management is often performed by a standardized tool, mainly providing design

features for process notations such as BPMN (Business Process Modelling Notation). Although

for some cases those standard drawing tools may be sufficient, we observe challenges when

aiming to interpret the models.

In case the process models are interpreted, and hence require to be stored with the

corresponding semantic description – in our case we use conceptual meta-models – there is

additional meta-data necessary, hence simple drawing tools are not sufficient. Full-fledged

modelling tools typically provide a model repository with the capability to parametrize the

models and each individual object inside the model. This enables key features of process

management such as queries, simulations or model transformation but on the other side

require sophisticated repository technology.

Model-driven tools can follow one of two complementary approaches. First one is the

standardized tool approach, aiming to implement a standard tool according a standard

modelling notation with standard features. The second approach is the provisioning of

configurable and flexible tools that can provide both standard modelling notation and features

as well as personalized and configured modelling approaches and personalized tool features.

We provide the latter, as it enables us the flexibility of both: (a) the modelling languages as

well as (b) the modelling features. On the other hand, we can always downgrade our tool by

instantiating a particular standard.

This deliverable introduces the meta-modelling platform ADOxx, which is available as open use

for academic use in the world-wide community ADOxx.org. Results of this EU project in form

of the corresponding prototypes introduced in this deliverable are therefore available as open

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 17 of 101

use and partly open source in this community. The meta-modelling approach enables the

configuration of the modelling language and therefore enable a personalised configuration of

the platform modelling language. In our case we consider to adapt the modelling language

BPMN to also include energy relevant concepts and apply a semantical enrichment technique

to semantically uplift models and modelling languages to be align with the BIMERR ontology.

Beside the flexibility of the meta-model, we introduce the Microservice Framework Olive that

enables the flexible configuration and personalization of the functional capabilities of the

application. The application consists of a set of cloud offerings, in combination with tools and

microservices, hence we follow the idea of an “ecosystem” that has the process management

application in the center and integrates and uses several microservices and additional tools to

personalize the functional capabilities.

This deliverable introduces the first set of ADOxx meta-modelling configuration as well as the

initial set of microservices to provide a first ecosystem for renovation process management.

1.2 INTRODUCTION OF TAXONOMY AND METHODOLOGY

The application ecosystem consists of the main application, in our setup this is the design

component realised on the meta-modelling platform ADOxx providing all necessary modelling

features. The Microservice Framework Olive spans a set of identified features to support the

renovation process management. Those features are either implemented as microservices that

provide the requested feature or as microservices that act as a proxy object and interact with

a corresponding 3rd party tool.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 18 of 101

Figure 1 - Ecosystem overview

Figure 1 introduces the first ecosystem that is provided in form of this deliverable by providing

a running demonstrator as well as the corresponding ADOxx configuration files, as well as

Microservice Framework Olive with the realized Microservices for BIMERR as a downloadable

package on ADOxx.org.

1.2.1 Designing Tool for Renovation Processes

The design tool is based on ADOxx.org which can be configured using a modelling library configuration

– in the so-called ABL file format – that uses the pre-defined functional capability of the modelling

repository, the access and model management, the graphical drawing, the analysis, some simulation

algorithms as well as the transformation algorithm that enables the conversion of the models into

other format. This transformation engine is important as it enable the graph-rewriting of a model and

hence the transformation into another syntax to enable interaction with other tools.

The three boxes (a) renovation process, (b) KPI Model and (c) Data Model correspond to different

configuration files – ABL files – that configure the modelling environment accordingly to enable

process modelling, KPI modelling or data modelling depending which configuration file is in use.

Additional features – like a questionnaire or an assistant that supports the creation of a process model

in particular when the engineer needs to instantiate the renovation project and create the project plan

as well as the corresponding process model – are foreseen but currently not implemented.

Those additional features are introduced in the second iteration, when the users got familiar with the

tool and hence can provide feedback on useful features when using it.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 19 of 101

1.2.2 Monitoring and Evaluation Tool for Renovation Processes

This tool set is provided in form of microservices that interpret the KPI and Data Models and collect

data from sensors. As we align the semantic description that is used in the BIMERR Integration

Framework – BIF from WP4 – with our meta-model, the data that are received from the integration

framework by the data sensors can be related to the models.

This knowledge-based enrichment enables the use of semantic information and domain specific

concepts when reading the pure sensor data.

In order to test this, we introduce the renovation process context in both (a) a process execution that

report each stage of the process as well as a forward-looking simulation that assesses how the process

is likely to be in the near future. This forward-looking simulation is novel and the mechanisms in use

are based on a discrete event simulation that simulates each token and can read the properties for

each process element per token. Such detailed configuration possibilities for the simulations enable a

so-called knowledge-based simulation, where knowledge is currently extracted in form of an Excel

sheet that configures the simulation. The next iteration of the tool set, will introduce advanced

mechanisms to manage the knowledge without the exclusive usage of an Excel file.

The harmonised semantic from the models, the log-files and data streams from sensors – established

because of aforementioned semantic alignment of the concept models in our design component and

the ontology in the integration framework – allows to use a 3rd party process execution engine and

hence demonstrate not only that renovation processes that can be assisted by the execution of a so-

called digital representation – the process model – of the renovation process, but, due to the semantic

alignment, the log files can be used within the BIMERR integration framework as well as in our

monitoring environment.

1.2.3 Innovation and Reflection Tools for Renovation Processes

The final phase of the renovation process management is considered with learning and reflection. We

consider reinforcement learning by using process mining – that is aligned with the semantic of the

model as the model has been created in our design tool and uses the aligned semantic – to check if

the process execution run as planned. In particular when decisions are being made, the status of the

process as well as the status of the simulations are stored, hence the reinforcement learning cycle can

consider the lessons learned generated from the process log files and introduce them in form of

updated models and simulation setting for the next project.

As the renovation process is a highly manual task in its execution and the execution engine can only

represent a part in form of a so-called digital twin, we propose also the complementary use of a

collaboration platform and provide a Wiki platform. The open source project xWiki was used to

demonstrate the alignment of wiki pages with the models. Models are used to generate wiki pages,

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 20 of 101

which can be used to document a certain process stage or elaborate decisions or co-creatively improve

the model. The wiki pages are seen as complementary input from users to better document a process

status, contribute to a decision or reflect the decision afterwards.

In the second iteration of the prototype, we expect that the co-creative features will be strengthened

by integration with legacy systems or the complementation of other tools and services.

1.2.4 Development Methodology

The prototypes have been developed using a rapid prototyping approach that is combined with a

design-thinking approach in two iterations. First, the design-thinking approach is a top-down approach

where ideas on the functional capabilities of the PWMA are assumed and then developed as a proof

of concept. The idea has been elaborated with the end users and all other stakeholders in D6.1 and

the functional capabilities has been elaborated with the end users in D6.2. Second, the actual software

development is performed following a rapid prototyping approach, where one prototype is developed

after the other, and each prototype has a typical size of 5-10 person days of implementation. This leads

to a series of rapid prototypes which result into one consolidated prototype when the functional

capabilities that have been originally foreseen are available. Each intermediate rapid prototype has

been presented to the end users and the stakeholders to allow agile changes. The final prototype with

its full functional capabilities is approached in two iteration, the first from month 10-18 and the second

from month 19-30. The first iteration focused on the initial set of functional capabilities to present a

proof-of-concept of the PWMA, whereas the second iteration will focus on the integration of other

BIMERR and 3rd party services and adapt the prototype while being used by the end users. In overall

we found the combination of an iterative design-thinking approaches and proof-of-concept

development in combination with rapid prototypes to achieve the proof-of-concept as appropriate for

the PWMA development.

1.3 STRUCTURE OF THE DELIVERABLE

The deliverable addresses the aforementioned objectives in form of:

• Chapter 1 introduces the demonstration with an overview of the used tools and functionalities

• Chapter 2 provide details of the Renovation process design environment. In this chapter the

modelling environment for renovation processes and workflow and the environment for

modelling KPIs associated to the renovation process are described.

• Chapter 3 describe the monitoring and evaluation tools used in the demonstration. The first

part of the chapter will provide details on the KPIs dashboard used to monitor the status of

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 21 of 101

some KPIs specifics for the considered use case while the second part will focus on the

prediction of future behaviour through the renovation process simulation toolkit.

• Chapter 4 introduce the innovation tools for the renovation process. The first section of the

chapter introduce the analysis of data produced by the renovation process workflow engine

using the Celonis toolkit, while in the second section the renovation process collaboration tool

based on wiki concepts is presented.

• Chapter 5 provide details about the integration with the other BIMERR tools, in particular with

the BIF, the workflow system and data in the external world.

• Chapter 6 describe details about the installation and instructions to use all the previously

described tools.

• Chapter 7 contain the conclusions and the outlook remarks.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 22 of 101

2. DESIGN TOOLS FOR RENOVATION PROCESS

The Renovation Process design tool is the starting point for all the tools described in this

deliverable. It is based on the ADOxx1 meta-modelling platform that are used to create the

renovation process and workflow design tools as well as the KPIs design tool.

In the following sections first the demonstration of the design environment for the renovation

process and the renovation workflow are reported and then the design environment for the

Renovation KPIs and Goals.

2.1 RENOVATION PROCESS AND WORKFLOW DESIGN TOOL

The business process design tool is an application build with ADOxx. ADOxx is a meta-

modelling platform that allow to define your own meta-model and automatically generate the

modelling environment for you accordingly it. In the business process design tool the meta-

model is based on the BPMN2.0 standard meta-model. This allows to have a modelling

environment that is compliant with the BPMN2.0 standard, allowing to abstract the renovation

process at many levels. In the D6.2 (BIMERR Consortium,2020) the concept of Template model

has been introduced and all the created models are described in details. This is a renovation

process abstract enough to be valid for all the renovation use cases, including all the practices

to be taken into account. This template process has been designed using the BPMN2.0 meta-

model. At a more detailed level the Renovation process instance represent the instanced

templated model relative to the specific use case. Decisions specific for the use case here have

been taken depending for example on the type of the facade to renovate or on the ventilation

system in use, so the model has been kept as BPMN. At a lower abstraction level the renovation

process workflows have been modelled with enough details to be executable by the BIMERR

workflow engine. Here constraints have been applied in order to have a model compliant with

the BIMERR workflow engine such as necessity of converging gateways after every choice. Also

in this case the BPMN2.0 meta-model has been used in order to be compliant not only with

the BIMERR Workflow Engine but also with the majorities of workflow execution engines on

the market.

1 www.adoxx.org

file:///D:/BIMERR/D6.4/www.adoxx.org

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 23 of 101

The Renovation Process Design tool has been provided in two forms, (1) a community version

library for ADOxx and (2) a project specific cloud version of ADOxx modeler.

The community version library allows to create an ADOxx modelling environment as a windows

desktop application that everyone can freely setup and redistribute. The renovation process

design tool in this case is based on ADOxx v1.5 and allows to model the renovation process

template, instance and workflow using the BPMN2.0 standard. Additional features are in this

case provided by the ADOxx Community in terms of add-ons that the user can install from the

ADOxx community portal www.adoxx.org.

Figure 2 - Renovation process design tool community version

The cloud version of the Renovation Process Design tool is instead a BIMERR customized

version of the cloud based ADOxx and is available under the endpoint https://bimerr.boc-

group.eu/ADONISNP10_0/auth.view. The access is protected with a user and password

authentication system that allow the profiling of the users and the compliance with security

requirements. Credentials for testing the platform are user specific and can be requested via

mail at faq@adoxx.org.

http://www.adoxx.org/
https://bimerr.boc-group.eu/ADONISNP10_0/auth.view
https://bimerr.boc-group.eu/ADONISNP10_0/auth.view

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 24 of 101

Figure 3 - Renovation Process Cloud Modelling Environment

The cloud version of the Renovation Process Design tool is a full business process management

suite with possibilities not only to create models but also to manage their release cycle and

check their correctness. In this demonstration we will focus on the design features of the

renovation process templates, instances and workflow models in the BPMN2.0 standard

model-type.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 25 of 101

Figure 4 - Renovation Process Cloud Modelling Environment Main Interface

In this section it is possible to explore all the existing models in a folder tree view, visualize

them and create new ones using the BPMN2.0 modelling canvas. Here the interface allows to

click and create all objects supported by the BPMN2.0 standard, with some facilitating features

like next objects and connectors suggestions or automatic alignments.

The tool provides export features in the BPMN2.0 standard format as well as generation of

images and reports with details of the model objects. This and other features are also available

in a REST interface in order to enable integration with other components of the BIMERR

platform, in particular with the Workflow engine component.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 26 of 101

Figure 5 - Renovation Process Cloud Modelling Environment Design Interface

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 27 of 101

2.2 RENOVATION PROCESS KPI DESIGN TOOL

The Renovation process KPI design tool is an application build with ADOxx, a meta-modelling

platform that allows to define your own meta-model and automatically generate the modelling

environment for you accordingly it. Also in this case, like the renovation process design tool, a

community version of the platform is available. The corresponding cloud version will be

demonstrated in the final prototype. The community version library allows to create an ADOxx

modelling environment as a windows desktop application that everyone can freely setup and

redistribute.

In the renovation process KPI design tool the meta-model is based on concepts of the balanced

scorecard (Kaplan, Robert S., and Norton, 1992), extended with a data model-type that allow

to specify how the KPIs are retrieved and calculated. In the D6.2 (BIMERR Consortium,2020)

has been introduced the concept of KPIs for the scaffold cost of the renovation facade scenario.

The first meta-model defined is the cause and effect model-type. It allows to define KPIs and

Goals with their relations and group them in specific perspective. In particular:

• Perspective group similar KPIs, like grouping all “Financial” indicators or all “Time” or “Quality”

dependent indicators.

• Goals and sub-goals describe the objective to be achieved.

• KPIs describe measurable data sets that assess in combination with the indicator context –

plan value, real value, thresholds, type of thresholds and meta data about the indicator –, if

the corresponding goal can be achieved or not.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 28 of 101

Figure 6 - KPI model

Every object in the model has a common set of attributes like a name and a description of the

object, plus a set of specific attributes that characterize it.

In the case of Goals and Sub-Goals the

specific attributes refer to the type of the

goal that can be Strategic or Operational

and on the aggregation type of the data that

represent how often this goal is evaluated.

Referring on details of the evaluation of the

Goal is possible to specify the procedure

used during its evaluation. The goal,

therefore, can succeed if all its

dependencies succeed or if at least one

succeeds. Additionally, if none of these

reflect the goal behaviour, it is possible to

provide the actual algorithm in JavaScript

format needed to evaluate the Goal. In this

context the connection flows between the

goal and its relevant KPIs and sub-goals that

determine the goal dependencies are

relevant.

Figure 7 - Goals attributes

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 29 of 101

In the case of KPI objects the specific

attributes are relative to the fields of data

available in the KPI and information on the

target and alert ranges of the KPI value.

The Fields represent what kind of metrics

are available in this KPIs. Usually there is a

value field (cost in this case) that contain

the value of the KPI and an instant time field

that contains at what time the KPI value has

been calculated, but this is not fixed and

always valid, so the user can provide as

much as he need. Every field can also have

a specific measure unit.

Also in this case it is possible to specify the

aggregation type of the data representing

how often the KPI is calculated. KPIs in

order to be meaningful must be associated

with thresholding that in this case are

represented as target and alert ranges. The

target range must contain a formula (as a

JavaScript expression) that uses the field

name defined above, and that specifies the

value range that is the target of our KPI (eg.

Cost < 20000).

Figure 8 - KPI Attributes

Using the same approach, it is possible to define one or more alert range that allow to specify

when the KPI is approaching a risky value on the border of the target range. Multiple alert

ranges are possible here, so as example if the cost > 15000 there is a yellow/moderate alert

while if the cost > 19000 there is a red/important alert because the value is approaching the

top border of the target range. Ranges allow to represent information on the threshold of a

value (eg. 20000) combined with information of expected directions of the values (so if the

threshold is an upper or lower bound), allowing to represent cases of discrete values as well.

At the end, it is important to associate the KPI to a metric in order to be correctly calculated.

The metric is defined in the data calculation model that define how the metric value have to

be retrieved or calculated.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 30 of 101

Figure 9 - Data calculation model

The data calculation model is composed of Metrics and Data Items including dependencies

between them. Metrics (represented as green circles) represent a data in a specific format and

contain information on how the value of this data have to be calculated using as inputs sub-

metrics and data access indicators. The Data Items (represented blue circles) on the other side

are able to describe how a data value is retrieved from an external system that can be as

example a remote service, a sensor, a database or even an Excel sheet. In this context, the data

access indicator is strongly dependent on the Olive microservice framework that is responsible

to provide the features to access such external system.

Also in the data calculation model, every object has a common set of attributes like a name

and a description of the object, plus a set of specific attributes that characterize it.

For the Metric objects such attributes refer to the way the metric is calculated on the basis of

its dependencies. The Input Object Aliases attributes refer to this and allow to specify for every

dependency an alias name to use in the calculation formula. Alias can be any name but must

not contain spaces and start with a number.

The Fields represent what kind of data are available in this metric. Usually there is a value field

(cost in this case) that contain the value of the metric and an instant time field that contain at

what time the metric value has been calculated, but this are not fixed and always valid, so the

user can provide as much as he needs. Every field can optionally have a specific measure unit

(Euro in the case of the cost field) but must specify the formula used to calculate the specific

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 31 of 101

field of the metric. The function can be described in the form of JavaScript expression and the

defined aliases can be accessed and used in the formula. Fields of dependent objects can be

accessed using the dot operator, so if we defined an alias for a sub-metric and such sub-metric

have a field “cost” defined, in the formula this can be reached writing the alias name followed

by a dot followed by the field name (eg. “a.cost”). Every field defined must contain a calculation

formula. If there is no need for a formula like in the case of the instant time field, this can be

taken directly from the dependency (eg. Specifying “b.instant”). Considering as a sample the

metric “Current Scaffold Cost”, that should be calculated multiplying the scaffold cost per day

with the current execution time, we can define such behaviour creating first the aliases for the

sub-metrics “Concrete Scaffold Costs per Day” and “Current execution time in days” naming

respectively “a” and “b”. Then the “cost” field of can be calculated using the function “a.cost *

b.executionTime”, where “a.cost” refer to the “cost” field of the “Concreate Scaffold Cost per

Day” sub-metrics, while “b.executionTime” refer to the “executionTime” field of the “Current

execution time in days” sub-metrics. About the “instant” field we used the formula “b.instant”

meaning that we use here the same value of the “instant” field of the sub-metric “Current

Execution time in days”.

In case of exotic metrics functions it is possible to provide your own algorithm in JavaScript

format that will calculate the metric fields using the “Custom JS Algorithm attribute”.

Figure 10 - Metric Attributes

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 32 of 101

The Data Items are able to represent how the data values are collected from external systems

through the microservice framework Olive2. For this purpose the microservice must return the

data in a specific format in order to be recognized. The data must be a JSON object that contain

a “columns” array containing the list of returned field names (that must match the one defined

in the fields attributes) and a “data” array of JSON objects each one containing a key for every

field defined in the “columns” with the appropriate value in string format.

An example of a valid JSON that the Olive microservice must return is the following:

{

 "columns" : ["cost", "instant"],

 "data" : [{

 "cost": "2000",

 "instant": '2020-01-30T11:40:22'

 },{

 "cost" : "1900",

 "instant": "2020-01-29T10:40:50"

 },{

 "cost" : "1800",

 "instant": "2020-01-28T09:40:15"

 }]

}

2 https://www.adoxx.org/live/olive

https://www.adoxx.org/live/olive

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 33 of 101

Also in this case is important to define the data fields that the service return with optional

information on the measure unit for the specific value in the field.

As soon as the microservice in Olive is ready, it is important to refer to it using its unique id

and providing the operation name and its required inputs in terms of input id with appropriate

value. This will be the same input that the microservice expect as a JSON format but explicitly

defined key by key.

In the case of the Data Items that contain the results of the optimistic simulation (“Optimistic

Simulation process execution time ms”) the microservice operation used is the

“getSimulationResults” providing as input the parameter “simulationType” with value “o” that

in the context of the service means “give me the result of the optimistic simulation”. The

returned JSON contain the fields “executionTime” as milliseconds value and the “instant” time

of the simulation.

Figure 11 - Data Items Attributes

The community version library allows to create an ADOxx modelling environment as a windows

desktop application that everyone can freely setup and redistribute. The renovation process

KPI design tool in this case is based on ADOxx v1.5 and allow to model the renovation process

KPIs using the previously described meta-model in terms of KPIs and Data access models.

Additional features are in this case provided by the ADOxx Community in terms of add-on that

the user can install from the ADOxx community portal www.adoxx.org.

http://www.adoxx.org/

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 34 of 101

Figure 12 - Renovation process KPIs design tool community version

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 35 of 101

3. MONITORING AND EVALUATION TOOL FOR RENOVATION PROCESSES

The monitoring and evaluation tools for the renovation process are used to support the user

in the evaluation of the current status of the process and on the future behavior.

In the following sections the demonstration of the monitoring cockpits first and of the

renovation process simulation later, are reported.

3.1 RENOVATION PROCESSES-ORIENTED KPI DASHBOARDS

The KPI dashboard visualize in a combined view both the backward looking monitoring with

the forward looking simulation results. The dashboard interface is based on configurable

widgets where the KPIs can be visualized in different formats accordingly to the widget

features. The KPIs definitions are taken directly from the renovation process KPIs design tool

that is able to export them in a format recognized by the dashboard. The dashboard use the

KPIs information reported in the model in order to automatically evaluate them, calculating the

relative metrics and retrieving the data from the data sources using the right Olive microservice.

Figure 13 - Renovation KPI cockpit use case

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 36 of 101

3.1.1 Models-based Monitoring Dashboards demonstration

The KPI dashboard is strongly based on the KPI and data model used. A detailed description

of the models created for the BIMERR demonstration is available in the D6.2 (BIMERR

Consortium,2020). This models are focused on the scaffold costs and contain the definition of

the following KPIs including their relative metrics and data sources:

• Measured Scaffold Effective Costs: Is a backward looking KPI that monitor on a scheduled

based time the scaffold current costs.

• Simulated Scaffold Optimistic Costs: Is a forward looking KPIs that show the results of the last

simulation performed with optimistic risks evaluation on the scaffold estimated costs.

• Simulated Scaffold Moderate Costs: Is a forward looking KPIs that show the results of the last

simulation performed with moderate risks evaluation on the scaffold estimated costs.

• Simulated Scaffold Pessimistic Costs: Is a forward looking KPIs that show the results of the last

simulation performed with pessimistic risks evaluation on the scaffold estimated costs.

Two dashboards are currently available that support a product view of the KPIs and a process

dependent view.

The first dashboard use four widget to visualize the KPIs: one image map widget and three line

chart widgets. The image map visualize the building facade to renovate using an image from

Google Street View and overlay the values of the previously described KPIs using a color code

that immediately reflect the KPI status (green for KPIs with value in the target range, yellow for

KPIs with value in the alert range and red for KPIs with value outside the target range). The

three line chart widgets are used to display the historical trend of the three simulation results

visualizing in a Cartesian chart the estimated scaffold cost for every performed simulation over

time, allowing to analyze the alignments of the simulation inputs with the real data in the past.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 37 of 101

Figure 14 - Backward-looking Monitoring and Forward-Looking Simulation of KPI-Scaffold Costs

The second dashboard demonstrates the Process-Oriented Context of the dashboard by the

possibility to link KPIs to different phases of the process. For each time slot of a process can

be linked to the actual as well as to the simulated KPIs.

The process-oriented representation also allows to drill the KPI down either in the process-

oriented view, or using the model-tree, which represents the KPIs as they are modelled in the

KPI-model. This help to understand the cause of a failing KPIs checking how its dependencies

behave, finding the root of the problem.

Hence the process-oriented representation is first an alternative visualization of the dashboard

and second the possibility to additionally introduce the linkage of a process phases to a

concrete KPI.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 38 of 101

Figure 15 - Simulation Output for KPIs

The intention is that a dashboard can be created where KPIs are linked to different phases of

the process that can be simulated and hence dependencies between phases can be considered

on an aggregated view. In case a complex process is described by several in parallel running

construction sites and each process for each construction site uses simulated KPIs, the

aggregating complex process is the simulated using the dependencies of the underlying

processes.

Such complex scenarios require complex modelling and knowledge externalization in the

design phase, and hence may only be appropriate for specific dashboard. A simple simulation

of one renovation process for the simulation of one KPI will be introduced in the next section.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 39 of 101

3.1.2 Models-based Monitoring Dashboards architecture

The KPI dashboard is a component that is able to perform a marriage between models and

data resulting in a customizable web dashboard. The models contain information about how

to retrieve the data and how to combine them in order to form metrics, and how to use such

metrics to evaluate KPIs and goals. The data are external and obtained through specifics

microservices, created with the Olive framework, able to connect with different type of data

sources. At the end the results are displayed using a widget based interface that is able to

display the KPIs and metrics in different formats depending on the domain and the user

experience.

Figure 16 - KPIs Dashboard architecture

The dashboard accept KPIs models provided in a specific JSON format. The Renovation process

KPIs design tool provide a feature to export the KPIs and data model in such specific JSON

format. This model is processed by the model interpreter component that have the

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 40 of 101

responsibility to create an internal representation of the model collecting all the dependencies,

the calculation methods and the data sources for all the KPIs, goals and metrics in the model.

Such model information are processed by the KPI core component that is responsible to call

the microservices described in the model in order to retrieve the data, apply the calculation

functions as described in the model and make the resulting values available for the user

interface. The interaction of the KPI core with the different microservices is helped by a DAO

component that provide also caching features and an optimized microservice communication.

The functions are evaluated in a component that is able to interpret and validate them in order

to avoid security issues.

When the evaluated KPIs and Goals are available will be provided to the UI component on

widget request. The widget manager component is responsible to manage the interface for

the creation and configuration of the different widgets giving them also access to the

calculated data.

The dashboard provide out of the box four most commonly used widgets but extension are

possible through a plug-in based mechanism:

• Chart widget: is able to visualize a KPI value in a Cartesian chart. The user can configure the

type of chart to use, choosing between horizontal bar chart, vertical bar chart, line chart, curve

chart and radar chart and after that can specify which KPI field show for every axis and an

optional threshold line. As example the “Simulated Scaffold Optimistic Cost” KPI containing

the data fields “cost” and “instant” can be visualized in a line chart selecting for the X axe the

“instant” field and for the Y axe the “cost” field.

Figure 17 - KPI dashboard chart widget

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 41 of 101

• Table widget: this widget allow to visualize all the details of a configured KPI in a table format.

All the values will be visualized as well as evaluation of the KPI status with a green, yellow, red

indicator.

Figure 18 - KPI dashboard table widget

• Image widget: This widget allow to overlay one or more KPI details over an image. The KPIs

are displayed with a color code that reflect the KPI status and details are visualized moving the

mouse over the indicator.

Figure 19 - KPI dashboard image widget

• Tree widget: This widget allow to visualize all the KPI in a collapsible tree view organized

hierarchically or linearly on their dependencies. In this way is possible to identify the root

cause of a problematic KPI or goal simplifying the behavior analysis.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 42 of 101

Figure 20 - KPI dashboard tree widget

At the end the UI component is responsible for the rendering of the configured widgets in a

docked layout that the user can configure resizing and moving the widgets around the page

with a drag and drop mechanism.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 43 of 101

3.2 SIMULATION TOOLS FOR RENOVATION PROCESSES

This section demonstrates the knowledge based simulation for the renovation process first and

then provide a view on the architecture of the tool.

3.2.1 Simulation tool demonstration use case

The simulation tool requires as input first of all the renovation process workflow in standard

BPMN format. The process to simulate can be exported in BPMN format directly from the

renovation process and workflow design tool. Additionally an Excel sheet containing times,

costs and decision probabilities is required. This format has been used as a temporary solution

to give the user freedom to provide input using complex formulas and will be replaced in the

final prototype by an integrated interface.

Figure 21 - Renovation process Simulation inputs

The Excel input file must be created accordingly the details described in D6.2 (BIMERR

Consortium,2020).

In particular the Excel must contain the following 3 sheets in the proposed order:

1. C_START_EVENT

2. C_TASK

3. C_EXCLUSIVE_GATEWAY

The C_START_EVENT sheet provide information on the number of simulation to run with their starting

time and unique identifier. The first column of this sheet must contain the name of the starting event

as reported in the BPMN model. The second column must contain the starting time of this specific

event while the third column an unique id to associate to the simulation run in order to have a

reference later in the simulation results.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 44 of 101

Figure 22 - Renovation process simulation input C_START_EVENT

The C_TASK sheet contain the execution time of every activity in our renovation process. The

first column must contain the activity name as reported in the BPMN model. The second

column is an optional starting time that can be used to provide an additional waiting time

before the activity start. By default the activity start as soon as the previous one is terminated.

The third column represent the execution time expressed in milliseconds. This value can be

provided directly but the great advantage of using Excel as input source is that you can

calculate this value combining different factors together. Additional sheets are used for this

scope. The forth column can contain the unique id of the simulation run to be used for or the

value default if the activity is valid for every simulation run.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 45 of 101

Figure 23- Renovation process simulation input C_TASK

In case of choices the C_EXCLUSIVE_GATEWAY sheet must be filled. This allow to specify for

every choice in the BPMN process, the probability to use during the simulation. The first column

in this case must contain the exclusive gateway name as reported in the BPMN process; the

second column an optional waiting time to postpone the choice execution and the third

column the probability value of all its outgoing sequence flows.

As introduced previously, additional sheets can be present in order to define the execution

time for every task, combining different indicators and risk factors. Different approaches can

be used to combine the risk factors as described in D6.2 (BIMERR Consortium,2020). An

example is the weighted combination of the normal distribution of five different factors: (1) the

normally estimated average task time, (2) the probability of the delay due to payment

problems, (3) the delay introduced by bad weather forecast, (4) the delay introduced by sub-

contractors problems and (5) the delay introduced by unexpected events.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 46 of 101

Figure 24 - Renovation process simulation input calculation

As soon as both inputs are ready the simulation can start. Once completed, the results are

visualized in two different forms: an overview of times and cost with path probabilities and

generic information of the process and a detailed view in form of an execution log that can be

used also to perform a comparison with real workflow execution.

Figure 25 - Renovation process simulation general results

The general results in particular contains the following data:

Name Measure Details

Average Cost Average cost during all

of the simulation runs

-

Max Cost Max cost during all of

the simulation runs

Trace name that contains this

cost

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 47 of 101

Min Cost Min cost during all of

the simulation runs

Trace name that contains this

cost

Total Costs Sum of all costs during

all of the simulation runs

-

Average Executions Time total execution time /

total simulation runs

number

-

Max Executions Time Max execution time

during all of the

simulation runs

Trace name that contains it

Min Executions Time Min execution time

during all of the

simulation runs

Trace name that contains it

Total Executions Time Sum of all execution

times during all of the

simulation runs

-

Total Runs Number of simulation

runs

-

Total Traces Number of Petri Net

traces passed through

each simulation run

-

Total Paths Number of Petri Net

places passed through

each simulation run

-

Table 1 - Renovation process simulation general results details

The detailed results are in form of Excel sheet of the same structure used as input but with

detail on the simulated starting and execution times.

The C_TASK sheet in particular will contain in the first column the id of the run involved, in the

second column the name of the task performed and in the third column the simulated starting

time with the actual execution time in the fourth column.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 48 of 101

Additionally a C_END_EVENT sheet is present that contain for every started simulation its

ending time.

Figure 26 - Renovation process simulation detailed results

3.2.2 Simulation tool architecture

The BIMERR Renovation process Simulation provides a fast and extendible service able to

simulate renovation process executions. The service use the Petri Net logics in order to simulate

processes and workflow provided in BPMN2.0 formats and it is flexible enough to support the

simulation of other kind of models through the definition of their appropriate mapping rules

to Petri Net. The service is provided as REST API with a graphical HTML client that show the

results in a user friendly way.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 49 of 101

Figure 27 - Renovation process simulation engine architecture

A description of the main component of the simulator are provided in the following:

The petri net core module is the component that contain the main logic of a petri net and

manage its semantic. The simulation service use this component in order to evaluate at each

step which transition can be enabled.

The import module is an easy to extend component that is able to automatically recognize

the format of the provided model and convert it in the internal petri net structure. It manage

separately the logic of document parsing and of object mapping in order to reuse the same

mapping logic for multiple file format (like in the case of BPMN and ADOxx BPMN). This is also

responsible to associate the input from the Excel sheet to the right BPMN object.

The export module is for diagnostic only. It give the possibility to export the internal petri net

structure in PNML standard format in order to be visualized in any supported editor.

The simulation measures module is an easy to extend component that give the possibility to

define listeners for the simulation event. Each listener produce a measure or a result from a

single simulation, like a trace, a path, the waiting times or the execution costs. The resulting

indexes can then be collected in a special container in order to calculate some final indexes

(like average values).

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 50 of 101

The discrete event selector module is the component that perform the choice of the transition

to execute between the available one. The module provide a base mechanism that perform a

fear choice between parallel transitions and a user defined probabilistic choice between

concurrent transitions. The base mechanism has been also extended in order to support

dynamic probability evaluation using a scripting system.

The simulation module is the component that manage all the simulations, invoking the

functionalities of the measures module and of the transition choice. It is also responsible for

the generation of the simulation output in a structured format.

The full documentation including the source code and example of features extension is

available to the community through the ADOxx portal https://www.adoxx.org/live/dashboard-

version-2.

https://www.adoxx.org/live/dashboard-version-2
https://www.adoxx.org/live/dashboard-version-2

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 51 of 101

3.3 CREATION OF DIGITAL TWIN WITH WORKFLOW EXECUTION

Once the process model of the reconstruction process has been created, it is time for execution.

The only input used by the Workflow Execution tool is a BPMN-DI file, which contains the tasks

of the reconstruction process with all the attributes modeled in the previous phases of the

preparation.

The process model in form of BPMN-DI file is imported to the I3D system and is transformed

to the internal structure of it. It is handled as a workflow template and in case of need can be

adjusted before it is used.

Figure 28 - Renovation workflow process imported to I3D

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 52 of 101

Figure 29 - Adjustable reconstruction process template

The template is used by the project manager to generate a real instance of the reconstruction

process, which is called workorder in the I3D system. A visualization of the workorder is

available for the project manager to make it easier to follow the project and to do interactions

with its objects.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 53 of 101

Figure 30 - Visualized running reconstruction process

Figure 31 - Interaction with the objects of the reconstruction process

All the attributes presented in the BPMN-DI are used and displayed as planned values and the

project manager can confirm them or record his own values as real data generated during the

reconstruction process.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 54 of 101

Figure 32 - Evidence of planned and collected attributes

All the planned and collected data are provided for further analysis and re-planning of the

process with the goal to make the next reconstructions more effective.

Figure 33 - Output of the execution engine – list of attributes and notifications connected to the tasks

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 55 of 101

Figure 34 - Export of all the executed instances connected to a reconstruction process template

Since the process imported from the BPMN model can have different level of details, the UI for

the project manager allows to assign sub-workflows to any task of the reconstruction process.

This allows to create tasks with higher granularity, than the overall process.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 56 of 101

Figure 35 - Sub processes of the task

The sub processes can be executed and monitored via the web-based UI (prototype displayed

on figures above). The application for on-site support of the workers to execute the assigned

processes is displayed on figures below. It is designed to be used primarily on Head Mounted

Devices – smart glasses (Figure 36). The current version is optimized for Head Mounted Device

Realwear HMT-1, the final version of the application will support Microsoft HoloLens 2, too.

The design of the application is optimized both for indoor and outdoor use where the dark

background with bright text provides the best readability for the user under different light

conditions (bright text on dark background worked the best for the users of the application).

The navigation of the application is made with a focus to provide the user the option to select

the control which fits the best to the actual user need and smart glasses used. The built-in

voice-recognition of Realwear HMT-1 glasses is fully supported. As alternative option, a

gyroscope-based controller has been implemented, which allows to navigate in the menu by

head movements. Alternative controllers, such as the touchpad in Google EE2 or pointer in

ThirdEye Gen X2 smart glasses are supported, too. The same application can be alternatively

installed and used on mobile phones and tablets as a back-up solution for on-site users (e.g.

in case of broken smart glasses).

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 57 of 101

Figure 36 – Smart glasses application for on-site support of workers running on Head Mounted Display

Figure 37 – Smart glasses application for on-site support of workers – log-in screen

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 58 of 101

Figure 38 - Application for on-site support of workers to execute assigned tasks – list of assigned tasks

Figure 39 - Details of the assigned task

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 59 of 101

In case, the task has assigned sub-processes, the attributes are aggregated from the sub-task

and summarized.

The web-based UI provides for the Project manager also the option to mark, which locations

are affected by each task or subtask as well as to indicate Health and Safety issues connected

to the tasks of the running reconstruction workorder.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 60 of 101

4. REFLECTION AND INNOVATION TOOLS FOR RENOVATION PROCESSES

In this chapter the set of component for workflow log analysis and renovation process

collaboration are described.

4.1 PROCESS MINING OF RENOVATION PROCESS

Process mining is used to support the analysis and evaluation of business processes. Trends

and patterns in the process data are interesting for the improvement of processes. Therefore,

data mining algorithms are applied on the process data. Not only should the efficiency of

processes be improved by process mining, but also the understanding, especially

dependencies and interconnections. It might not only be necessary to improve specific tasks

regarding their execution time, as sometimes a restructuring of the whole process is more

reasonable. For mining the renovation processes, the free process mining platform Celonis3

was used. In the following subsection, a description of the preparations, the creation of an

analysis workspace and the results are provided based on our outside facade renovation

process sample.

Celonis is a process mining platform that allow to analyze log files and construct custom

analytical dashboards. Its free version Celonis Snap can be used after registration to their portal

and the whole platform is available as a cloud application. The process to provide log files to

analyze and obtain back the results is now manual. Currently the log generated by the workflow

engine will require some manual processing in order to be accepted as valid inputs for Celonis

Snap. Improvement on this process with some automations will be made available in the final

prototype.

4.1.1 Logs preparation for Celonis

Celonis requires one single CSV file as input. The results of the workflow must so be combined

on one Excel worksheet that, afterwards, must be converted to a CSV file with field separator

3 https://www.celonis.com/
• Assign ‘Activity Name’ to the second column

• Assign ‘Timestamp’ to the third column

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 61 of 101

“;” so that Celonis can parse the entries. The CSV parser of Celonis must be configured as

follows:

• Input type: CSV

• Field separator: “;”

• Header row: “unchecked”

• Date format: ‘yyyy-MM-dd'T'hh:mm:ss’

In a second step Celonis requires to associate a specific semantic meaning to the CSV columns

in order to interpret its data. This association have to be performed as follows:

• Assign ‘Case ID’ to the first column, which holds the information
• Assign ‘Activity Name’ to the second column
• Assign ‘Timestamp’ to the third column

After this assignment the data is ready to be analyzed.

Figure 40 - Celonis logs preparation

4.1.2 Creation of Analysis Workspace

First, a new workspace for analysis have to be created. This in the process analytics space where

all the defined workspaces are available. Here the user can create a new workspace starting

from the previously uploaded logs. A new analytics workspace allow by default to visualize the

process obtained from the log analysis, including their variants and statistics. This workspace

can be customized using configurable widgets and custom table analytics done using a

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 62 of 101

proprietary SQL-like language named PQL used to combine and analyze tables resulting from

the logs.

For the BIMERR use case in particular a workbench view with the following widgets has been

created:

• Process Explorer widget: allow to visualize the workflow generated from the logs, including

all the variants. It allow to compare it with the original workflow in order to identify incorrect

behaviors.

• Cases Variants: Is a table widget that allow to visualize all the process variants listing the tasks

of each one. This table must be constructed with the following columns:

o Case ID: Containing the formula "_CEL_CSV_ACTIVITIES_CASES"."_CASE_KEY"

o Variant: Containing the formula VARIANT("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN")

• Frequencies: Is a table widget that allow to visualize the frequency of every choice. This is

useful to identify if the data used for the process simulation was correct or need alignments.

This table must be constructed with the following columns:

o Source Activity: With the formula SOURCE("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN")

o Target Activity: With the formula TARGET("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN")

o Frequency: Containing COUNT(TARGET("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN"))

• Execution Times: Is a table widget that allow to visualize the average execution time of every

task. This table must be constructed with the following columns:

o Activity: Using the formula SOURCE("_CEL_CSV_ACTIVITIES"."ACTIVITY_EN")

o Average Execution Time: Using the formula AVG(DATEDIFF(ms,

SOURCE("_CEL_CSV_ACTIVITIES"."EVENTTIME"),

TARGET("_CEL_CSV_ACTIVITIES"."EVENTTIME")))

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 63 of 101

Figure 41 - Celonis Analysis Workspace for BIMERR

In order to enable the exports of the results the created workspace need to be configured. In

the Edit mode the user must access the Analysis setting in the menu and turn on the

checkboxes named “Allow excel and csv export of analysis components” and “Allow bpmn

export of the process explorer”. This allow to have a right click menu entry on every widget

that allow to generate a BPMN file for the process in order to be imported in the modelling

environment and compare with the original workflow, and to generate CSV files for every one

of the tree table available in our workspace.

Figure 42 - Excel Output

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 64 of 101

4.2 COLLABORATIVE REFLECTION OF RENOVATION PROCESS

Beginning with people working in collaboration, a so-called collective intelligence can emerge.

Due to interaction and competition, the group has an increased problem-solving capacity. The

change of finding a solution within the group is much higher compared to a single person

tackling the issues of interest. Especially, the principle of agreeing on reasonable approaches

and avoiding critical ideas applies in collective intelligence. The final goal should be consensus

decision making. Collective intelligence is measured by the collective IQ. Network effects

between distributed data, knowledge, software applications, computing capabilities and

experts are used to build up the collective intelligence. Feedback and continuous

improvements and learnings are considered in real time. In order to structure the way of

working and to put the ideas and comments on record, social media or other contribution

systems might be used. For instance, Wikipedia is one platform widely known for collective

intelligence, as it allows easy exchange of knowledge, ideas and thoughts.

As already mentioned, collective intelligence is beneficial for solving problems and finding

improvements. For this reason, a model wiki based on XWiki4 allows commenting models and

retrieving comments. Furthermore, a kind of review process is included.

4.2.1 Model Wiki application

The Model Wiki web application allow to generate xWiki pages from any model in the ADOxx

modelling environment and as soon as the pages are generated allow to import any existing

comments in the wiki back to the model.

The user must first have a model available in the ADOxx Modelling environment. As soon as

the user created a model or imported in ADOxx, the web application is able to retrieve it and

using the “Model Export” user interface allow the user to automatically generate a series of

xWiki pages. An external reviewer can then look at the generated wiki pages and collaborate

on the model, commenting the relative wiki page. Through the “Import wiki comments” user

4 https://www.xwiki.org/xwiki/bin/view/Main/WebHome

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 65 of 101

interface the modeler can decide to automatically import existing comments in a specific

attribute of the model or of the model objects.

Figure 43 - Model Wiki use case scenario

The web application uses the Olive microservices to communicate with the ADOxx modelling

environment in order to (1) retrieve the list of all the available models, (2) retrieve all the

attributes and objects of a specific model, (3) retrieve the image of a specific model, (4) retrieve

all the attribute of a specific object and (5) write the comments in a specific attribute of a model

or of an object. Additionally, Olive microservices are used also for the communication with the

xWiki platform in order to (1) create an xWiki page and (2) retrieve the comments of a specific

xWiki page.

The user interface of the web application has been made using the Olive UI Workbench. In

particular the UI is composed of two widgets, named “Model-to-wiki UI” and “Wiki-to-model

UI” and displayed in sequence in the main rendering page.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 66 of 101

Figure 44 - Model Wiki architecture

The xWiki REST APIs are used in order to perform all the required operations in the remote wiki

platform.

The ADOxx Modelling environment is instead accessed programmatically using its SOAP APIs

that need to be enabled using the AdoScript5 command CC "AdoScript" SERVICE start

port:80.

The Model Wiki web application uses the following defined Olive microservices:

• Model image retrieval service: microservice that communicate with the SOAP interface of the

ADOxx Modelling environment. Require as input a model id and return the Base64 encoded

image representation of the model.

• Models retrieval service: microservice that communicate with the SOAP interface of the

ADOxx Modelling environment and return a list of IDs and names of all available models.

• Object retrieval service: microservice that communicate with the SOAP interface of the ADOxx

Modelling environment. Require as input a model id and return the list of all the objects inside

the model.

• Attribute retrieval service: microservice that communicate with the SOAP interface of the

ADOxx Modelling environment. Require as input the id of a model or of an object and return

the list of all its attributes.

5 https://www.adoxx.org/live/external-coupling-overview

https://www.adoxx.org/live/external-coupling-overview

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 67 of 101

• Attribute write service: microservice that communicate with the SOAP interface of the ADOxx

Modelling environment. Require as input the id of a model or object, the attribute name to

use and the value to write in the attribute. Return a confirmation code that reflect if the

attribute has been written correctly or not.

• Pages creation service: microservice that communicate with the xWiki REST interface in order

to create a page on xWiki. Require as input a page id, page title and page content using the

xWiki syntax.

• Comment retrieval service: microservice that communicate with the xWiki REST interface in

order to retrieve comments on a specific xWiki page. Require as input the page id of the xWiki

page to lookup.

• Model-to-Wiki service: microservice that orchestrate all the Olive microservices required to

generate xWiki pages from a model. The service will generate an xWiki page for the model

with information on its graphical representation and its attributes and a sub-page for every

model objects containing a description of all the objects attributes. Require as input the model

ID and use the “model image retrieval”, “object retrieval”, “attribute retrieval” and “page

creation” microservices in the background.

• Wiki-to-Model service: microservice that orchestrate all the Olive microservices required to

import comments of xWiki pages inside the respective model. Require as input the model ID,

a model attribute ID and the list of model object IDs with a model object attribute. Use

internally the “comment retrieval services” to find all the comments in the model and use the

“attribute write services” to store the comments on the model.

About the frontend side the Model Wiki web application use the following widgets defined

using the Olive UI Workbench:

• Model-to-wiki UI: This widget use the “models retrieval service” in order to first obtain the list

of all the available models in the ADOxx Modelling Environment and visualize them in a select

box, then allow to call the “Model-to-Wiki service” that is responsible to perform all the

operations of generating the xWiki pages of the selected model, clicking the “Generate Wiki

Pages” button.

Figure 45 - Model-to-Wiki UI Widget

• Wiki-to-model UI: This widget use the “models retrieval service” in order to first obtain the

list of all the available models in the ADOxx Modelling Environment and visualize them in a

select box. As soon as the user select a model it update the select box relative to the model

attributes and the table containing all the model objects with a relative select of object

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 68 of 101

attributes. This done calling the “object retrieval” and the “attribute retrieval” microservices.

The model attribute select allow to specify which model attribute to use in order to store

comments related to the model (general xWiki page about the model). The object attribute

selects allow to specify for every objects which attribute to use in order to store the comments

related to the object (specific xWiki sub-page of the model about the object). When the

needed attributes have been selected the widget allow to call the “Wiki-to-Model service” that

is responsible to perform all the operations of importing the comments for all the xWiki pages

related to the selected model in the selected model and objects attributes, clicking the “Import

comments to model” button.

Figure 46 - Wiki-to-Model UI Widget

4.2.2 Model Wiki sample use case

This section containt an example of Model Wiki for the Facade Renovation process. This

process is modelled in the ADOxx Modelling environment using the BPMN2.0 Library that allow

to model processes using the BPMN2 standard notation.

As soon as the SOAP service is started in the ADOxx Modelling environment the Model-to-

Wiki UI is able to retrieve the list of all the available models. The user can now select the Facade

Renovation process and click the “Generate Wiki Pages” button.

Figure 47 - Facade Renovation Process to Wiki

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 69 of 101

The generation of the xWiki pages may take some times depending on the size of the model.

As soon as the generation is completed the xWiki will contain a page describing the process

model with its graphical representation and a description of all its attributes. Additionally this

page will contain a subpage for every task included in the model with its description.

The reviewer have now the possibility to comment on the page relative to the model or on

every sub-page relative to the tasks. In this case a comment have been added on the Building

Scaffold task.

Figure 48 - Wiki pages generated for the Facade Renovation Process

When the modeler decide to check the status of the collaboration on the model, he can import

the comments into the original model in order to be processed later. The modeler select so

the Facade renovation process and the attributes to use to store the comments for every

objects (in particular for this case only for the Building Scaffold task).

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 70 of 101

Figure 49 - Wiki-to-Model UI widget for the Facade Renovation process

Clicking the “Import comments to model” button the model will be updated and the comments

can be visualized in the attribute “Comment” selected. In case of multiple comments all of them

will be imported in the same attributes separated by a newline. Information about the user and

the timestamp at the creation of the comments are reported as well.

Figure 50 - Comments imported for the Building Scaffold task of the Facade Renovation process

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 71 of 101

5. INTEGRATION WITH BIMERR TOOLS

This chapter contains a detailed view on the integration strategies used by the different

components to interact with the BIF and between them.

5.1 INTEGRATION WITH BIF

As described in detail in the BIMERR Deliverables D4.4, D4.6 and D4.8 (BIMERR Consortium,

2020 D4.4, D4.6 D4.8), the BIMERR Interoperability Framework (BIF) essentially allows any

application and tool developed in BIMERR to exchange building-related data, ranging from

building data and occupancy data to renovation process data, in a meaningful an secure

manner. In this context, the BIMERR Renovation Process Simulation Tool practically acts both

as a building-related data provider and consumer in order to effectively enable the anticipated

data exchanges with other BIMERR applications.

From the perspective of the BIMERR Renovation Process Simulation Tool acting as a data

provider, its respective developers access the integrated BIF platform interface and create as

many data collection jobs as needed in order to upload the different renovation process data

(depending on whether they intend to apply different access rules for different parts of the

data). For each data collection job, they define the applicable ingestion method (that is typically

a GET method exposed by the BIMERR Renovation Process Simulation Tool) and configure all

its related parameters (ranging from the authentication aspects and the query parameters to

the ingestion schedule). Upon defining how the harvesting of the renovation process data will

occur, they need to proceed with mapping and semantically lifting the data that are to be

uploaded in BIF to the respective BIMERR data models (that are created on the basis of the

BIMERR ontologies described in section 5.2). They need to manually confirm whether the

predicted mappings are correct and complement them with additional information related to

the measurement units and the date-time formats, whenever applicable. Then, they need to

define the metadata related to the specific data that are to be uploaded, e.g. the applicable

building and project information, and the access policies that need to be applied (e.g. in terms

of which applications should have or not have access to the specific data). Such a multi-step

configuration at data collection time ensure that data will be collected once or on a specific

schedule from the APIs exposed by the BIMERR Renovation Process Simulation Tool, and shall

be available for retrieval by other BIMERR applications.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 72 of 101

From the perspective of the BIMERR Renovation Process Simulation Tool acting as a data

consumer, its respective developers access the integrated BIF platform interface and initiate a

new query in order to identify the data they would like to access from other BIMERR

applications with the help of the BIF. To this direction, they define the exact properties of the

data they want to acquire and whether any of them should act as a query parameter according

to their preferences (e.g. to retrieve very specific data for a specific id or all data for all ids in a

single or multiple datasets). Once a query is created, the related datasets that include the

requested information are identified and their access policies are enforced to check whether

the BIMERR Renovation Process Simulation Tool is authorized to access them. They are

informed which are exactly the data that the BIMERR Renovation Process Simulation Tool is

able to access, they confirm whether the specific data are what they needed and they get a

specific query identifier and the related information (such as an API key). Such information is

utilized in the BIMERR Renovation Process Simulation Tool in order to automatically retrieve

the specific data that were selected in the query from the BIMERR APIs. They can create as

many calls to the BIF as needed (through corresponding queries) in order to retrieve all the

building-related data according to the requirements and specifications of the BIMERR

Renovation Process Simulation Tool.

5.2 INTEGRATION WITH ONTOLOGY

The following section describes the Key Performance Indicator ontology, explaining the main

concepts and properties used for its construction, and how they model performance indicators

utilized by the PWMA tool. It should be noted that the current model described in this

document represents an evolution of the first conceptualization detailed in D4.2 (BIMERR

Consortium, 2020 D4.2). More precisely in this version more specific alignments with the

PWMA tools have been taken into account. However, some content might overlap with D4.2

description.

By means of this semantic representation, PWMA can share their indicators to other BIMERR

applications interested in analyze or display project management information.

5.2.1 Ontology Model Explanation

This ontological model aims to provide the vocabulary to represent indicators used to monitor

the advance of the project, and verify if the goals or sub-goals established at the beginning of

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 73 of 101

a task or process are being satisfied. For that purpose, the model should be able to represent

not only conceptual information but also numerical information that will allow the project

manager or any other stakeholder monitor the advancement of the renovation activities. This

numerical information is the result of the assessment of several aspect of the renovation

project, such as total time to finish the project or the planned cost related to the material to

be used.

The ontology also covers requirements coming from other BIMERR applications, such as

RenoDSS, that also generates performance indicators. Figure 51 gives a general overview of

the current state of the KPI conceptualization. The ontology is accessible through its permanent

URI, 6 which also provides the HTML documentation of the ontology as well a different

ontological serializations.

The model constructed reuses terms from other well kwon ontologies listed in Table 2. The

table indicates the URI of the ontologies, and the prefixes employed for their representation

on the diagrams and in this description. For instance, the term kpi:EconomicKPI means that

the full URI for this concept is: http://bimerr.iot.linkeddata.es/def/key-performance-

indicator#EconomicKPI.

Prefix Namespace

kpi http://bimerr.iot.linkeddata.es/def/key-performance-indicator#

saref https://saref.etsi.org/core/

s4city https://w3id.org/def/saref4city#

time http://www.w3.org/2006/time#

Table 2 - Ontology Prefixes and Namespaces

There exists a variety of KPIs that can be used to measure the performance of a renovation

project, the model groups this set of KPI’s into five categories: kpi:ComfortKPI,

kpi:EnergyKPI, kpi:SustainabilityKPI, kpi:EconomicKPI, and kpi:TimeKPI. In

this new iteration of the model, only the kpi:TimeKPI category was included taking into

account the D6.2 documentation (BIMERR Consortium, 2020 D6.2), as cost was already

modelled as kpi:EconomicKPI. The rest of KPI’s were created to support energy simulation

6 http://bimerr.iot.linkeddata.es/def/key-performance-indicator#

http://bimerr.iot.linkeddata.es/def/key-performance-indicator#EconomicKPI
http://bimerr.iot.linkeddata.es/def/key-performance-indicator#EconomicKPI
http://bimerr.iot.linkeddata.es/def/key-performance-indicator

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 74 of 101

tools (RenoDSS) requirements. We also assign an identifier for each KPI generated and a

calculation period.

During the development of the project the indicators defined at the beginning can be assessed

to monitor the progress being made. The model enables to express this fact by stablishing the

relationship s4city:quantifiesKPI between a KPI Value and their corresponding

definition. Also, if required, a time stamp can be added to the assessed KPI value, to indicate

when this evaluation occurred. The KPI metrics can be calculated based on a set of parameters

(kpi:CalculationParameter), like the time or cost per unit. This is in line with the data

access model described in D6.2 (BIMERR Consortium, 2020 D6.2), which gives semantics to the

way how KPIs are generated. In the first iteration of the model, the ontology only allowed the

assignment of a singular quantity to a KPI value, however this new version allows the expression

of a KPI assessments in terms of a range of values if necessary (kpi:minValue and

kpi:maxValue), besides a tolerance property is added to represent the permitted deviation

from those limits.

The PWMA model described in D6.2 also includes concepts for goals and sub-goals which main

stakeholders of the project set at the beginning of the renovation process. In order to satisfy

these requirements we introduce the class kpi:Goal and the property kpi:hasSubGoal.

The ontology also introduced the relation kpi:monitorsIndicator, which connects the

goals with a set of KPI values, to verify that these objectives are being satisfied. A KPI metric is

not a fixed measure, it depends on a context that is defined by the kpi:Project conditions

and the renovation kpi:Scenario finally chosen to be implemented.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 75 of 101

Figure 51 - KPI conceptualization.

5.2.2 Model Instantiation

In order to show how to populate the ontology we take the example provided in Section 6.2

of D6.2 (BIMERR Consortium, 2020 D6.2). This case describes the KPI model used to estimate

the cost related to the “building scaffold” task. This metric needs as input several parameters:

the m2 of scaffold, the price per m2, and the number of days the scaffold is actually needed.

These parameters are not obtained at once, but created at different stages of the project. For

example, the m2 of scaffold and the prices per m2 are estimated during the initial plan,

meanwhile the usage time of the scaffold can only be known after signing the contract. In the

use case, the target cost is estimated at 15 EUR per m2, and the total m2 of scaffold needed is

1000 m2.

The Figure 52 depicts how this information can be projected into the KPI ontology. Blue boxes

are the ontological concepts previously discussed, and the individuals are represented by white

boxes under the concepts they belong to. The dashed lines are the relations or attributes

described before connecting to individuals or literals respectively. The cost measure,

represented by the individual data:ScaffoldCost, is of type kpi:EconomicKPI, where

their assessment is encoded by the data:ScaffoldCostValue01 instance, which has a

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 76 of 101

numerical value of “300000”, and a unit of measure of “EUR”. Additionally, we can link the KPI

metrics to the parameters needed for its calculation. In this case, we have the parameter cost

per unit, that is represented by the individual data:ScaffoldCostPerUnit01, encoding

the value (15) and the unit of measure (EUR_M2). The data:ScaffoldCostValue01 has

been evaluated within the context of the project data:BimerrProject01 and the

renovation scenario data:SimulatedScenario01.

Figure 52 - Example of KPI Ontology Population

5.3 INTEGRATION WITH WORKFLOW

The workflow execution engine will be developed in two iterations. In the first prototype which

is going to be presented, the orchestration of the reconstruction process will be made

manually, and the tool will be used by the project manager to track the progress of the

reconstruction and to record the actual data.

The final version is going to be a semi-automatic version, where external data can affect the

reconstruction process. For relevant inputs it will be possible to map an API call (to BIF or

external services) which will make the process more automatic. E.g. checking the weather

forecast for reconstruction tasks, where weather conditions can affect the quality and result of

the work.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 77 of 101

The workflow execution engine will receive from BIF information about the locations – sectors

of the building. This information is going to be used to map the ongoing processes to the

locations. This mapping is needed to generate notifications about the locations affected by the

ongoing reconstruction process.

The workflow execution engine will provide information to other components via BIF. A JSON

with the process log of the whole reconstruction process including all of its tasks attributes

(both planned and real recorded) will be made available via BIF.

The workflow execution engine will also provide notifications to other components. The already

identified requirements to provide notifications are:

- List of actually planned affected locations

- List of planned activities with time plan on selected location

- List of finished tasks

- List of rescheduled tasks

- List of tasks with issues

- Issue Reporting (two-way)

o From renovation manager as notification

o From residents to Renovation Manager for review and acknowledgement

- Health and Safety Notifications

5.4 OPEN INTEGRATION FRAMEWORK

The Microservice Framework Olive7 is used as the basis for the development of all the services

and functionalities of the BIMERR Design environment, in particular for the one related to the

integration with external components and BIF.

Olive is a platform that allows to create Web applications through configuration of existing

components, both for the backend and for the frontend side. For the backend side such

components are named Connectors, and their configuration results in ready to use REST

7 https://www.adoxx.org/live/olive

https://www.adoxx.org/live/olive

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 78 of 101

microservices. For the frontend side such components are named Widgets and their

configuration results in a web rendered ready to use user interface.

Both the Connectors and the Widgets are part of the Olive platform but can be extended in

case of needs, through the use of plug-ins. Connectors provide the functionalities of your

backend services enabling the connection to external systems like databases, CMS, message

buses. Olive allow to orchestrate such functionalities resulting in the definition of your business

logic. Widgets on the other side are reusable components for the frontend and provide the UI

for sections of your web application. Widgets can be generics like visualizing a grid layout or

more specifics like visualizing the simulation or the KPIs dashboard interfaces.

The strong point of Olive is its model awareness in the sense that such configurations are

abstract enough that can be represented as models and the out-of-the-box integration with

the ADOxx modelling environment allow to create the whole looks and behavior of your web

application, drawing models. This integration allow also to use models as data for

microservices. An example is the process simulation microservice that simulate process models

taking them directly from the ADOxx modelling platform, or the KPIs evaluator microservice

that evaluate KPIs defined in models available in the ADOxx modelling platform.

Figure 53 - Olive high level overview

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 79 of 101

The Olive platform provide so a cloud environment where the user can define the microservices

and the user interfaces of its web applications, expose it to the public and allow to control its

lifecycle.

The Microservice Controller part of the Olive framework in particular, is used in the PWMA

environment of BIMERR as integration framework, allowing to create Microservices that collect

and exchange data with the interested BIMERR components. The Olive Microservice Controller

is a backend component that allow to define and manage Microservices in a novel way,

following the configuration approach. A Microservice in Olive is defined only through the

configuration of an existing platform component named Connector.

A Connector is a component developed in form of OSGi plug-in that allow to provide a specific

functionality, like perform a query on a MySQL database or publish a post on Twitter. The name

Connector derive from the fact that usually such functionalities depend from external systems

(like the database) and the Connector is responsible to connect to such systems to exploit their

features.

Olive Microservice Controller allow to manage the configurations of such Connectors, giving

the possibility to create Microservices and control their whole lifecycle. Is responsibility of the

lifecycle management component to (1) generate an instance of the REST microservice from

the configuration, (2) allow to start the microservice, (3) keep the microservice running in an

isolated environment, (4) allow to stop the microservice and (5) allow to dismiss it.

The OSGi Connectors Loader component is responsible to load all the Connectors and make

them available to the platform. It is built on the OSGi framework Apache Felix 8 and will

dynamically check the presence of the OSGi bundles (plug-ins) defining Connectors, loading

and unloading them on request.

As soon as the Microservices have been defined, they can be combined together to achieve

the business logic task thanks to the Orchestrator component. This component is responsible

to combine together existing microservices using the Enterprise Integration Pattern9 notation.

8 https://felix.apache.org/

9 https://www.enterpriseintegrationpatterns.com/

https://felix.apache.org/
https://www.enterpriseintegrationpatterns.com/

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 80 of 101

In order to support a higher level or freedom the orchestrator allow also to use the JavaScript

scripting language to combine microservices following so a more programmatic approach.

The Olive Microservice Controller expose all this functionality both with Java and REST APIs.

The firsts are used to integrate the Olive platform in local and desktop application. The seconds

are used to integrate the Olive platform with remote applications. Over the REST APIs has been

made available a management web user interface that allow exploit all the features of the Olive

Microservice Controller through the web browser.

Figure 54 - Olive Microservice Controller Architecture

5.4.1 Microservice definition

A Microservice in Olive is defined through a JSON file that contain the configuration of a

specific connector. The Olive platform is able to use this configuration file to create an instance

of the connector and expose it through a REST API. A connector is a function provided by the

Olive framework, responsible to perform a specific operation. An example is the MySQL

connector that allow to query a MySQL database, or a Twitter connector that allow to post and

retrieve posts on Twitter.

The connectors are structured in a way that allow to specify which part of the specific operation

have to be performed at microservice start, execution and stop. As example, the MySQL

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 81 of 101

connector will establish the connection with the database during the microservice start phase,

will perform the query during the execution phase and will close the connection during the

stop phase. This allow to support connection pooling and reuse the same database connection

for all the microservice request, increasing the response time. The configuration of the

connectors are relevant to the start and execution phases. Considering again the MySQL

connector, the configuration of the start phase (that perform the connection to the database)

allow to specify the database endpoint address and port, the database name and the access

credentials, while the configuration for the execution phase allow to specify only the query to

perform.

With this configuration Olive generate a REST service that connect to the specified database

and perform the configured query, returning the results in a tabular format as defined by the

connector.

Olive integrate out-of-the-box 24 connectors. Custom connectors can be added to the

platform as OSGi plugins. This allow to reuse existing OSGi based connectors like all the one

provided by the Apache Camel10 project.

Olive distinguish two kind of connectors, depending on the communication pattern required:

• Synchronous connectors: Types of connectors that provide a functionality on request. Such

kind of connectors are used to create REST microservices that once called perform some

operations and returns the results to the users. An example is the MySQL connector that is

used to create microservices that on user request will perform a query to the database and

return the result to the user.

• Asynchronous connectors: Types of connectors that performs operations mainly in

background. The Olive platform create REST microservices also from that connectors but they

did not return the operations results to the users but will start to process the request in

background. Such kind of services may also not require the interaction with the users at all.

Due to that fact, the Olive platform allow to attach to such microservices a previously defined

synchronous microservice used to process their results. A typical example is a microservice

that listen to a message bus. This microservice continuously check in background the presence

of new messages and as soon as a message is received will forward it to a microservice

responsible to store it in a MySQL database.

10 https://camel.apache.org/

https://camel.apache.org/

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 82 of 101

We can summarize that the synchronous connectors are used to create microservices that start

to work as soon as the user request them, while asynchronous connectors create microservices

that start to work as soon as the microservice is started.

Despite the fact that the main business logic of the microservice is provided by the used

Connector, the inputs and the output format of the microservice can be adapted. Those

adaptations are also specified defining them in the microservice configuration.

Olive allow also to check the status of the microservice. By default Olive automatically

recognize if a microservice is started, stopped and if its connector incurred in an error. In

addition the user can define how the output should look like in terms of format and data

content. This allow to perform a more deep status check taking into account also the semantic

of the output.

Microservices in Olive are organized in structures named Operations. Operations are methods

that relate to the same microservice and are the objects that contain the configuration of the

connectors, the definition of the inputs and the adaptation of the outputs. Operations are

uniquely identified by their name inside a microservice, which is instead identified through a

unique ID.

The definition of inputs for a microservice allows to have the microservice configuration

partially customizable by the final user through its inputs. In the microservice definition is

possible to define which inputs are required by the final users and how this inputs will impact

microservice configuration. Due to the fact that the final user interact with the microservice

only during its execution (and not during the start and stop phases), the inputs can go to affect

only the microservice configuration section relative to the execution phase. As an example we

consider a microservice that uses the MySQL connector to perform a query to a database. This

connector allows to configure the database endpoint and credentials to use during the starting

phase of the microservice, so this means that such information cannot be customized asking

inputs to the final user. The configuration of the query to perform is defined instead in the

execution phase so we can create a microservice input definition that customize the query. This

means that we can request the whole or only a part of the query to the final user as microservice

input.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 83 of 101

The customization of the microservice configuration through microservice inputs is done using

a match and replace mechanisms. In the configuration of the microservice is possible to specify

placeholders that will be replaced (previous validation) at execution time with the matching

microservice input provided by the final user. So the definition of a microservice input require

only a unique name for the input and the name of the placeholder that is used in the

configuration for the execution phase.

Using the previous example and imagining to query a database with the following SQL:

SELECT name FROM users WHERE mail=”Damiano.falcioni@boc-eu.com”;

If we want to have the mail as microservice input we must first add a placeholder to the query

like:

SELECT name FROM users WHERE mail=”$mail_input_placeholder”;

And then define an input with name “mail_ID” and placeholder

“$mail_input_placeholder”.

At this point when the final user call the microservice REST endpoint he must POST as input a

JSON object like this:

{

 “mail_ID”: {

 “value” : “Damiano.falcioni@boc-eu.com”

 }

}

The value provided for the input “mail_ID” will replace the placeholder string

“$mail_input_placeholder”, the resulting query will be performed and the result returned

to the final user.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 84 of 101

At the definition of a microservice it is possible to adapt the output of the configured connector

used in the microservice, providing an algorithm in the Javascript programming language. Such

algorithm can be used to parse the connector output and convert in the required format or do

complex data processing operations. Due to the high level of freedom left to the user, in this

case there are some configurable restrictions about the maximum allowed execution time of

the algorithm and about the allowed operations (for example operations on file system are

denied). Despite such restrictions the following additional data and functions are available:

• output: a variable containing the JSON object returned by the connector.

• input: a variable containing the JSON object provided as input by the final users to the

microservice POST endpoint.

• out({..}): a function used to return the final adapted output. This function must be called as

the last instruction of your adaptation Javascript. Accept as input a JSON object.

• callMicroservice(microserviceId, operationId, microserviceInputs): a function used to call an

existing microservice and obtain its output. It is used to simply the creation of complex

adaptation script, reusing existing microservices and can be used also to chain together

microservice functionalities. Require as input the unique id of the microservice, the id of the

microservice operation to perform and a JSON object containing the required microservice

inputs. Return a JSON object containing the output of the called microservice.

5.4.2 Microservice instantiation

As soon as the microservice has been defined, Olive make available a REST endpoint that

expose the microservice. At this point the microservice is ready to be used. The REST endpoint

require the unique id of the microservice and the name of the microservice operation to

execute as query parameters. Microservice inputs instead have to be provided in form of JSON

object passed as POST data. The output is returned also as JSON object with a standard

structure that encapsulate the microservice output. Olive uniform so the interfaces of all the

defined microservices exposing them in a REST endpoint with POST method with fixed query

string parameters, POST data and output format.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 85 of 101

Figure 55 - Olive Microservice REST endpoint sample using SoapUI11

If the microservice is called before being started it will start automatically. The Olive

Microservice framework allow also to manually control the starting and stopping phase of a

microservice in order to deallocate resources on the machine. These operations are all

manageable through the APIs of the Olive Microservice Controller framework as well as

through the management interface.

During the starting phase of a microservice a new thread is executed and kept active till its

stopping. In the thread the configured connector used by the microservice is initialized. The

configuration relative to the starting phase is used for this initialization. As soon as all the

initialization operation are completed the microservice is in a started phase and ready to be

executed. When the microservice is not used since a long time or on user request it can be

stopped. All the stopping operations of the connector are executed and the thread will be

terminated.

The thread isolation level is something that is not so common in microservice development

due to its insecurity over shared variables. This is true but only if the user write insecure code.

The Olive Microservice Controller, following the approach of defining Microservices through

connector configuration, don’t allow the user to create insecure code. The vulnerable point is

in the development of new connectors that the user may require, but in this case is the user

responsible for the deployment of a local instance of the Olive Microservice Controller and of

its security, while if the new connector is proposed to the community it will follow a deep

11 https://www.soapui.org/

https://www.soapui.org/

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 86 of 101

review process before being released and available to download in the Olive Microservice

Controller package12.

5.4.3 Microservice Controller User Interface

The main interface is composed of a simple view that allow to select a microservice from a list

of all the public microservices or provide the ID of the microservice in case of a private one. As

soon as a microservice is selected or provided, the list of all its operation is filled. From this

point the interface allow to delete the microservice using the “Delete” button, edit the

microservice configuration via the “Edit” button, starting all its operation using the “Start”

button and stopping all the started operations using the “Stop”” button. When the user select

an operation its status is displayed as a green, yellow, red indicator indicating respectively if

the microservice operation is running correctly, if is running with some errors (reporting them)

or if is stopped. Pressing now the “Start” button the single operation can be started if stopped,

while pressing the “Stop” button can be stopped if started. Using the “Test a Call” button is

now possible also to test the microservice operation via another interface. At any time is

possible to click the “Create New” button that allow to configure a new microservice starting

from scratch.

Figure 56 - Olive Microservice Controller Management UI - Main view

The testing interface that appear when the “Test a Call” button is pressed, allow to easily

interact with the microservice REST endpoint, providing to the user a view of the required

inputs to provide and of the produced output. All the input fields are generated automatically

from the microservice definition and clicking the testing button they will be combined in the

format accepted by the microservice, sent to it and the output visualized in the relative view.

12 https://git.boc-group.eu/adoxx/microservice-controller-rest

https://git.boc-group.eu/adoxx/microservice-controller-rest

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 87 of 101

The interface so (1) visualize the full REST endpoint to call and the JSON of input data to post

in order to use the microservice, (2) allow to test the microservice with the provided inputs and

(3) visualize the output in raw JSON with possibility to test a JavaScript algorithm to process it.

Figure 57 - Olive Microservice Controller Management UI - Test view

The interface visualized when the “Create New” button is pressed on the main view is exactly

the same of the one visualized when the “Edit” button on the main view is pressed. The only

difference is the content visualized, that in the first case is empty, while in the second case is

pre-filled with the data of the existing microservice definition.

This interface allows to specify first the details of the microservice with its name and description

and if it must be visualized in the list of the public microservices available in the main view or

if is a private one and accessible only knowing its ID. Then allow to add operations to the

microservice. The operations created can be deleted pressing the “Delete” button available on

the right side of the operation header. Clicking on the header it will expand allowing to

configure all the details of the operation.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 88 of 101

Figure 58 - Olive Microservice Controller Management UI - Edit/New Microservice view collapsed

Expanding each operation section the user can modify the operation id, its visualized named

and description and if the operation should start automatically with the Olive platform. If not

selected the user must start it manually before being able to use it. If the default checkbox is

checked means that this operation is the entry point of the microservice and can be executed

without providing the operation id but only the microservice id. Only one operation per

microservice can be set as default. After this general configuration the user must select the

connector to use for this operation. The select box provide a list of all the connectors available

and on its selection change, all the subsequent configuration will change accordingly.

The “Start Configuration” view will visualize all the inputs required by the connector during its

initialization. These vary from connectors to connectors and may also be empty. In the case of

the REST Connector this section will contain the definition of the REST method to use, the

expected MIME content type and optionally a list of additional HTTP headers to setup. The

“Call Configuration” view will display all the inputs required by the connector during the

execution phase. These also vary from connectors to connectors and may also be empty. In the

case of the REST Connector this view will display the configuration of the REST endpoint with

optionally its query string and in case of POST or PUT methods optionally the data to send.

This section is the only one that can be affected by the microservice input from the user, using

the placeholders defined in the microservice inputs section. The “Call Configuration Inputs”

view allow to define the microservice inputs to ask to the final users and the placeholder to

replace. Every row in this section define a microservice input. New inputs can be added using

the “Add New Call Configuration Input” button and removed pressing the “X” button relative

to the row. Every input require an unique ID, the name of the placeholder to match for the

replacements with the inputs provided by the final users, a description and an example of

working input value. This value will be used also during the microservice status check to

evaluate the correctness of the microservice output.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 89 of 101

The next section to configure is the output description of your microservice that may be the

same of the connector output if no adaptation algorithm is defined. In case the output have to

be adapted, a JavaScript code can be provided in the “Output Adaptation Algorithm” section.

This JavaScript code can access the original output of the connector through the variable

output and the microservice inputs through the variable input. Both of the values are in

form of JSON objects. Additionally a function out({…}) is available and must be called as last

instruction of the algorithm in order to return the new value provided as parameter to the out

function in JSON object format. In this code also the

callMicroservice(microserviceId, operationId, microserviceInputs)

function can be used in order to call another microservice operation and use its output. The

last section allow to provide an algorithm to process the output during the microservice status

check. The last instruction in this case must be a Boolean value identifying if the output is

correct or not.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 90 of 101

Figure 59 - Olive Microservice Controller Management UI - Edit/New Microservice view expanded

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 91 of 101

6. CATALOGUE OF TOOLS FOR RENOVATION PROCESSES

This chapter describe where to download and how to setup and configure every tools

presented in this deliverable.

6.1 DESIGN TOOLS

The design tool is provided in two version: a community edition that everyone can download

based on the desktop version of the ADOxx application, and a cloud version, deployed in the

BOC cloud at https://bimerr.boc-group.eu/ADONISNP10_0/, that can be downloaded and

installed locally only with a license. In the following the setup instruction of both cases are

reported.

6.1.1 Community version of the Renovation process and KPIs design tool

The following instruction will guide you through the installation of the community version of

the renovation process design tool:

1. Download the ADOxx platform at https://www.adoxx.org/live/download-guided

2. Install it following the instructions provided in the page relative to your operating system.

3. Download the BPMN2.0 library from here: https://git.boc-group.eu/bimerr/fast-deploy-

package/-/blob/master/MODELS/BPMN/BPMN2Library.abl

4. Download the KPI library from here: https://git.boc-group.eu/bimerr/fast-deploy-package/-

/blob/master/MODELS/KPI/KPIMMLibrary.abl

5. Install the BPMN and the KPI library in the ADOxx platform following the instruction provide

in this video: https://www.adoxx.org/live/import_new_application_library

6. Download the sample BPMN models from here: https://git.boc-group.eu/bimerr/fast-deploy-

package/-/blob/master/MODELS/BPMN/BIMERR%20-

%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl

7. Download the sample KPI model from here: https://git.boc-group.eu/bimerr/fast-deploy-

package/-/blob/master/MODELS/KPI/BIMERR%20-%20Building%20Scaffold%20-

%20KPI%20Model%20v2.adl

8. Import the downloaded sample models following the instruction provided in this video:

https://www.adoxx.org/live/import_models_adl

https://bimerr.boc-group.eu/ADONISNP10_0/
https://www.adoxx.org/live/download-guided
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BPMN2Library.abl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BPMN2Library.abl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/KPIMMLibrary.abl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/KPIMMLibrary.abl
https://www.adoxx.org/live/import_new_application_library
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BIMERR%20-%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BIMERR%20-%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/BPMN/BIMERR%20-%20Facade%20Renovation%20Processes%20-%20BPMN%20Model.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/BIMERR%20-%20Building%20Scaffold%20-%20KPI%20Model%20v2.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/BIMERR%20-%20Building%20Scaffold%20-%20KPI%20Model%20v2.adl
https://git.boc-group.eu/bimerr/fast-deploy-package/-/blob/master/MODELS/KPI/BIMERR%20-%20Building%20Scaffold%20-%20KPI%20Model%20v2.adl
https://www.adoxx.org/live/import_models_adl

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 92 of 101

6.1.2 Cloud based Renovation process design tool

The cloud version of the renovation process design environment is freely accessible using the

BOC cloud deployed instance at https://bimerr.boc-group.eu/ADONISNP10_0/ after

registration.

Username and password required to enter the platform are created for single users on request

to the e-mail address: faq@adoxx.org.

6.1.3 Fast deployment of the cloud Renovation process design tool

The fast deployment package contain an easy way to deploy the cloud modelling environment

for both production and testing purposes. The repository https://git.boc-

group.eu/bimerr/adonis-fast-deployment-package contain the deployment package to

download. The repository is private and accessible only after the acquisition of a valid setup

license.

The only requirement for this package is the presence of Microsoft SQLServer already installed.

After the extraction then is sufficient to perform the following operations:

1. Run 1-start.bat to start the design environment

2. Run 2-ADONISNP10_0 localhost to open the web portal

3. Run 3-stop.bat to stop the design environment

In the package an initialization script named 0-init_db.bat is provided that must be executed

on very first run in order to initialize the SQL database.

6.2 WORKFLOW EXECUTION TOOLS

The workflow execution engine is available at https://i3d.econtent.lu/bimerr/.

If you are a new user, you need to register via “Ask for registration”. In project name, do not

forget to enter “bimerr”.

https://bimerr.boc-group.eu/ADONISNP10_0/
mailto:faq@adoxx.org
https://git.boc-group.eu/bimerr/adonis-fast-deployment-package
https://git.boc-group.eu/bimerr/adonis-fast-deployment-package
https://i3d.econtent.lu/bimerr/

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 93 of 101

Figure 60 - Workflow execution registration form

6.3 MONITORING AND EVALUATION TOOLS

In this section the deployment instruction of the monitoring and evaluation tools are provided.

First the KPIs dashboard deployment instructions are described, then the building and

deployment procedure of the simulation tool. The whole set of tools can be tested using the

fast deployment package provided at https://git.boc-group.eu/bimerr/fast-deploy-package/

that include all the dependencies and applications in one standalone package.

6.3.1 Fast deployment package

The GIT project at https://git.boc-group.eu/bimerr/fast-deploy-package/ is used to store as releases

all the created fast deployments packages based on Olive relative to the BIMERR EU Project.

Requirements:

1. ADOxx installed: https://www.adoxx.org/live/download-guided

2. KPI library and models imported: available inside the folder MODELS/KPI (check

https://www.adoxx.org/live/import_new_application_library and

https://www.adoxx.org/live/import_models_adl for detailed instructions)

3. BPMN library and models imported: available inside the folder MODELS/BPMN (check

https://www.adoxx.org/live/import_new_application_library and

https://www.adoxx.org/live/import_models_adl for detailed instructions)

Instructions to starting the portal:

1. Execute the "1-Start Tomcat.bat" file
2. Execute the "2-Start ADOxx SOAP Server.bat" using the created username and password for

the ADOxx Modelling toolkit

https://git.boc-group.eu/bimerr/fast-deploy-package/
https://git.boc-group.eu/bimerr/fast-deploy-package/
https://www.adoxx.org/live/download-guided
https://www.adoxx.org/live/import_new_application_library
https://www.adoxx.org/live/import_models_adl
https://www.adoxx.org/live/import_new_application_library
https://www.adoxx.org/live/import_models_adl

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 94 of 101

3. Execute the "3-Start xWiki.bat" file
4. Open the link "2-Open Olive for BIMERR Portal"
5. Read the documentation in the doc folder to start using the simulator
6. Terminate the Olive execution closing the command console opened in points 1, 3 (Ctrl+c).

Inside the folder MODELS you can find, divided by categories, all the required models to run the demo.
In particular inside the SIMULATION folder is provided the BPMN export of the renovation process as
well as different Excel inputs for the simulation. In the KPI folder there will be the ADOxx library with
the export of KPI models. In the DATA MINING there are samples of the workflow execution log to
provide to Celonis for analysis. Finally in the BPMN folder you can find the library and the model to
import in the ADOxx Community edition.

6.4 REFLECTION AND INNOVATION TOOLS

In this section the deployment instruction of the reflection and innovation tools are provided.

Also in this case the whole set of tools can be tested using the fast deployment package

provided at https://git.boc-group.eu/bimerr/fast-deploy-package/ and described in section

6.3.1.

6.4.1 Process Mining with Celonis

Celonis is a process mining platform that allow to analyze log files and construct custom

analytical dashboards. Its free version Celonis Snap can be used previous registration to their

portal and the whole platform is available as a cloud application. In order to use the service

perform a registration at https://www.celonis.com/snap-signup/. After successfully registered

you will have access to your own Celonis Snap analytics space. Details of your specific space

URL are sent by e-mail at the end of the registration process.

6.4.2 Collaboration with Model Wiki

The source and deployment instruction of the model wiki scenario are available in the GIT space

https://git.boc-group.eu/olive/model2wiki. In order to run the application apply the followings steps.

Olive Microservice Controller configuration:

https://git.boc-group.eu/bimerr/fast-deploy-package/
https://www.celonis.com/snap-signup/
https://git.boc-group.eu/olive/model2wiki

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 95 of 101

1. Deploy locally on port 8080 the last version of the microservice-controller from this url:

https://git.boc-group.eu/adoxx/microservice-controller-rest/-/tags

2. Copy the microservice JSON configuration file from the CONFIG folder to your micro-

service-controller service repository folder.

3. If everything is correct, refreshing your microservice controller dashboard you will see

a new microservice named "Wiki Scenario Services".

xWiki configuration:

1. Download the xWiki from https://www.xwiki.org/xwiki/bin/view/Download selecting

the "Standard Flavor Preinstalled" for an easy deploy

2. Deploy xWiki on port 8081: Extract the downloaded zip file in a folder and open that

folder in command console cmd.exe, then execute "start_xwiki.bat 8081" Note: In order

to add comments to a page you must be logged in. The default username is "Admin"

and password "admin"

ADOxx configuration:

1. Download and install the ADOxx toolkit from https://www.adoxx.org/live/download-

guided

2. Create a modelling library (follow the tutorials at

https://www.adoxx.org/live/getstarted-helloworld) or import an existing one

(https://www.adoxx.org/live/import_new_application_library)

3. Execute the ADOxxServerStart.bat file in the CONFIG folder in order to run the ADOxx

Modelling toolkit with enabled SOAP server on localhost port 80.

6.5 OPEN INTEGRATION FRAMEWORK OLIVE

This section will contain the instruction to build and setup the Olive Microservice Controller

framework. This framework is a dependency for most of the tools presented in this deliverable

and its presence is required in order to execute them. Three different deployment modalities

has been provided:

• Source code compilation: to have the full control and perform changes in the code. Suggested

for development.

• Manual setup: to have the full control of the deployment process. Suggested for production

deployment in legacy systems that cannot use the Docker technology.

https://git.boc-group.eu/adoxx/microservice-controller-rest/-/tags
https://www.xwiki.org/xwiki/bin/view/Download
https://www.adoxx.org/live/download-guided
https://www.adoxx.org/live/download-guided
https://www.adoxx.org/live/getstarted-helloworld
https://www.adoxx.org/live/import_new_application_library

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 96 of 101

• Fast deployment setup: useful for local testing of the platform. The full product is provided in

a standalone package without external dependencies and that do not need installation. This

modality will work only on window operating system.

• Docker setup: a production ready deployment based on Docker container. This is the best

option to test on machines supporting the Docker technology and for production deployment.

In the following each modality is explained.

6.5.1 Source code compilation

The Olive Microservice Framework is composed of two Java projects based on Maven. The core

project is represented by the Microservice Controller that expose all the framework

functionalities as Java APIs. Dependent on this project there is the Microservice Controller REST

that expose all the functionalities through REST protocol.

The following software requirements are needed:

• Java 8

• Maven

• Git

In order to compile the framework you must build the dependencies:

• Obtain the Microservice Controller source code:

Download the zip from https://git.boc-group.eu/adoxx/microservice-controller or git clone

https://git.boc-group.eu/adoxx/microservice-controller.git in a command console.

• Open the source folder in a command console.

• Build executing mvn install in the console.

Now you can build the war file to deploy in an application server:

1. Obtain the Microservice Controller REST interface source code:

Download the zip from https://git.boc-group.eu/adoxx/microservice-controller-rest or git

clone https://git.boc-group.eu/adoxx/microservice-controller-rest.git in a command console.

2. Open the source folder in a command console.

3. Build executing mvn install in the console.

The microservice-controller-rest.war file is now ready to be deployed in an application server

of your choice.

https://git.boc-group.eu/adoxx/microservice-controller
https://git.boc-group.eu/adoxx/microservice-controller-rest

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 97 of 101

6.5.2 Manual setup

In order to manually setup the Olive Microservice Controller you have to do the following steps:

1. Download the last version of the compiled microservice-controller-rest.war file from

https://git.boc-group.eu/adoxx/microservice-controller-rest/-/tags

2. Deploy the WAR file in a Tomcat webapp folder.

3. Update the paths in the configuration file config.json under micro-service-controller-

rest\src\main\resources\org\adoxx\microservice\api\rest

The required configuration keys are:

• microservicesDefinitionFolder: containing the folder where to store the microservices

Json configuration files.

• uploadFolder: containing the folder where to store the uploaded files.

• logFileName : containing the path of the log file.

• autostartEnabled: when true all the microservice that have an autostart property

enabled will start at runtime.

Once deployed the management web interface will be available at http://your_domain/micro-

service-controller-rest/.

6.5.3 Fast deployment package setup

The fast deployment installation package is a fast way to deploy the Olive Microservice

Controller. It is provided in the form of a standalone zip file containing all the components and

dependencies preconfigured to work out-of-the-box on Window OS. This is useful mainly for

testing and development purpose and should not be used on production environment.

In order to proceed perform the following steps:

1. Download the last version of the Olive Microservice Controller fast deployment installation

package from this URL: https://git.boc-group.eu/olive/microservice-controller-fast-

deployment-package/-/tags https://git.boc-group.eu/olive/model2wiki/-/tags.

2. Extract the content of the zip archive in a folder.

3. Read the README file in order to have more information on how to proceed.

4. Execute the "1-Start Microservice Controller.bat" file.

5. Open the link "2-Open Olive Microservice Controller Management UI".

6. Terminate the execution closing every command console opened in the points 4 (Ctrl+c).

https://git.boc-group.eu/adoxx/microservice-controller-rest/-/tags
https://git.boc-group.eu/olive/microservice-controller-fast-deployment-package/-/tags
https://git.boc-group.eu/olive/microservice-controller-fast-deployment-package/-/tags
https://git.boc-group.eu/olive/model2wiki/-/tags

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 98 of 101

6.5.4 Docker setup

The “dockerized” version of the Olive Microservice Controller allow to simplify the deployment

on production servers and Linux environment that do not support the fast deployment

package. The repository https://git.boc-group.eu/adoxx/microservice-controller-docker

contain the Docker file that generate a Docker image ready to be executed containing the last

version of the Olive Microservice Controller.

In order to start a Docker container you have to perform the following steps:

1. Download the msc-Dockerfile from the repository https://git.boc-

group.eu/adoxx/microservice-controller-docker

2. Build the image using the command:

sudo docker build -f msc-Dockerfile .

3. Run the container using a folder as volume for persistence:
mkdir ./msc-data
sudo docker run -it -p 8080:8080 -v ${PWD}/msc-data/:/opt/msc-data/ _id_from_build_

The management web interface of the Microservice Controller will be now available at

http://127.0.0.1:8080/micro-service-controller-rest/.

https://git.boc-group.eu/adoxx/microservice-controller-docker
https://git.boc-group.eu/adoxx/microservice-controller-docker
https://git.boc-group.eu/adoxx/microservice-controller-docker

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 99 of 101

7. CONCLUSION AND OUTLOOK

This deliverable introduces the first set of functional capabilities of the ecosystem of renovation

process management. The technology that is described in this deliverable corresponds to the

approach that is described in D6.2 “Adaptive Renovation Process & Workflow Models 1”. This

approach is updated in a second iteration and hence accordingly this deliverable and the

corresponding tool set will be updated.

This document explains the renovation process management tool ecosystem by:

• First, using the meta-modelling platform ADOxx, configure it for renovation process

management, KPI Models and Data Models in so-called ABL files. The platform can be

downloaded for academic use at www.adoxx.org, whereas the used ABL files can be

downloaded at www.adoxx.org under developer communities/developer spaces/BIMERR.

• Second, the Microservice Framework Olive is used to provide a set of functional capabilities

for the models. The framework is provided as a download package at ADOxx.org following the

link to Olive download.

• Third, the BIMERR specific set of microservices that provide the functionality described in this

document, is also provided as a package. It can be downloaded on ADOxx.org, following the

link to download Olive and select the latest BIMERR download package to get the latest

version. The package indicating D6.4 corresponds with this document; a later version of the

package indicates updates according this document.

• Forth, in case of accessing and integration 3rd party application like the workflow-engine, the

process mining tool or the xWiki platform, the corresponding download links to the

development communities are listed in the development space on ADOxx.org as the ABL files

mentioned in topic one above.

The update of this tool set will include:

• Integration in form of additional microservices to other tools in BIMERR to integrate the

BIMERR ecosystem for renovation process management.

• Introducing additional modelling assistant services to simplify the modelling and integrate

data that are already available into model, like using parts of the project plan to partly create

the process model.

• Simplify the simulation interface used to provide simulation parameters-

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 100 of 101

• Introduce services for better reflection and improvement of the renovation process

management such as the wiki pages for co-creative reflection. A tighter combination with

legacy systems or mobile apps has the potential to establish a learning environment.

• The execution using workflow engines may be enriched with the use of mobile apps to not

only integrate a workflow engine on the process management but to integrate relevant

applications for a user friendly and flexible renovation process management ecosystem.

Deliverable D6.4◼ 06/2020 ◼ BOC

BIMERR project ◼ GA #820621

Page 101 of 101

BIBLIOGRAPHY

BIMERR Consortium (2020). D4.2 BIMERR Ontology & Data Model 1

BIMERR Consortium (2020). D4.4 BIMERR Building Semantic Modelling tool 1

BIMERR Consortium (2020). D4.6 BIMERR Information Collection & Enrichment Tool 1

BIMERR Consortium (2020). D4.8 Integrated Interoperability Framework 1

BIMERR Consortium (2020). D6.2 – Adaptive Renovation Process & Workflow Models 1.

Kaplan, Robert S., and David Norton (1992). "The Balanced Scorecard: Measures that Drive

Performance." Harvard Business Review 70, no. 1.

